8.16 pytorch学习

py
在这里插入图片描述
在这里插入图片描述

import torch
# x = torch.arange(12)
# print(x)
#
# print(x.shape)
# print(x.numel())
#
# x=x.reshape(3,4)
# print(x)

# x = torch.arange(12,dtype=torch.float32).reshape((3,4))
# y = torch.tensor(([2.0,1,4,3],[1,2,3,4],[4,3,2,1]))
# torch.cat((x,y),dim=0),torch.cat((x,y),dim=1)

import os

# 创建一个人工数据集,并存储再csv(逗号分隔值)文件
os.makedirs(os.path.join('..','data'),exist_ok=True)
data_file = os.path.join('..','data','house_tiny.csv')
with open(data_file,'w') as f:
    f.write('NumRooms,Alley,Price\n')
    f.write('NA,Pave,127500\n')
    f.write('2,NA,106000\n')
    f.write('4,NA,178100\n')
    f.write('NA,NA,140000\n')

# 从创建的csv文件中加载原始数据集

import pandas as pd

data = pd.read_csv(data_file)
print(data)


在这里插入图片描述

# 从创建的csv文件中加载原始数据集

import pandas as pd

data = pd.read_csv(data_file)
print(data)

# 为了处理缺失的数据,典型的是插值和删除,这里,我们将考虑插值
inputs,outputs = data.iloc[:,0:2],data.iloc[:,2]
inputs = inputs.fillna(inputs.mean())
print(inputs)

在这里插入图片描述

inputs = pd.get_dummies(inputs,dummy_na=True)
print(inputs)

在这里插入图片描述

# 为了处理缺失的数据,典型的是插值和删除,这里,我们将考虑插值
inputs = data.iloc[:,0:2]
outputs = data.iloc[:,2]
inputs = inputs.fillna(inputs.mean())
print(inputs)

inputs = pd.get_dummies(inputs,dummy_na=True)
print(inputs)

import torch
x,y = torch.tensor(inputs.values),torch.tensor(outputs.values)
print(x,y)

在这里插入图片描述

import torch
a = torch.ones((2,5,4))
print(a.shape)

print(a.sum().shape)


在这里插入图片描述

print(a.sum(axis=1))

在这里插入图片描述


print(a.sum(axis=0).shape)
print(a.sum(axis=0))

在这里插入图片描述

print(a.sum(axis=[0,2]).shape)
print(a.sum(axis=[0,2]))

在这里插入图片描述

print(a.sum(axis=1,keepdims = True).shape)
print(a.sum(axis=1,keepdims = True))

print(a.sum(axis=[0,2],keepdims = True).shape)
print(a.sum(axis=[0,2],keepdims = True))

在这里插入图片描述

print(a.sum(axis=1,keepdims = True).shape)
print(a.sum(axis=1,keepdims = True))

print(a.sum(axis=[0,2],keepdims = True).shape)
print(a.sum(axis=[0,2],keepdims = True))

为什么会有20
在这里插入图片描述


print(a.sum(axis=[1,2]).shape)
print(a.sum(axis=[1,2]))

print(a.sum(axis=[1,2],keepdims = True).shape)
print(a.sum(axis=[1,2],keepdims = True))
print(a.sum(axis=[1,2]).shape)
print(a.sum(axis=[1,2]))


print(a.sum(axis=[0,1]).shape)
print(a.sum(axis=[0,1]))

print(a.sum(axis=[0,2]).shape)
print(a.sum(axis=[0,2]))
import numpy as np
arr = np.arange(24).reshape(2,3,4)
print(arr)

在这里插入图片描述

import numpy as np
arr = np.ones(24).reshape(2,3,4)
print(arr)

在这里插入图片描述

import numpy as np
arr = np.ones(24).reshape(2,3,4)
print(arr)
print("--------")
b = np.sum(arr,axis=0)
print(b)
print("--------")
b = np.sum(arr,axis=1)
print(b)
print("--------")
b = np.sum(arr,axis=2)
print(b)

在这里插入图片描述

import torch
a = torch.ones((2,3,4))
print(a)

print(a.sum(axis=0).shape)

print(a.sum(axis=0))

print(a.sum(axis=1).shape)
print(a.sum(axis=1))

print(a.sum(axis=2).shape)
print(a.sum(axis=2))

print(a.sum(axis=0,keepdims=True).shape)
print(a.sum(axis=0,keepdims=True))

print(a.sum(axis=1,keepdims=True).shape)
print(a.sum(axis=1,keepdims=True))

print(a.sum(axis=2,keepdims=True).shape)
print(a.sum(axis=2,keepdims=True))

在这里插入图片描述

print(a.sum(axis=(0,1)).shape)
print(a.sum(axis=(0,1)))

print(a.sum(axis=(0,2)).shape)
print(a.sum(axis=(0,2)))

print(a.sum(axis=(1,2)).shape)
print(a.sum(axis=(1,2)))

在这里插入图片描述

print(a.sum(axis=(0,1),keepdims=True).shape)
print(a.sum(axis=(0,1),keepdims=True))

print(a.sum(axis=(0,2),keepdims=True).shape)
print(a.sum(axis=(0,2),keepdims=True))

print(a.sum(axis=(1,2),keepdims=True).shape)
print(a.sum(axis=(1,2),keepdims=True))

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

向上Claire

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值