9.4-学习ing

本文介绍了神经网络的基本组成,包括神经元的加权和与非线性变换,以及多层连接形成的前向计算。讲解了模型假设、评价函数(如损失函数)和优化算法在寻找最佳模型中的作用。通过实例展示了如何使用监督学习解决实际问题,并以房价预测为例,说明数据预处理和训练集划分的过程。此外,讨论了均方误差作为损失函数的原因,以及神经网络与线性回归的区别。
摘要由CSDN通过智能技术生成

神经元

神经网络中每个节点称为神经元,由两部分组成:
加权和:将所有输入加权求和。
非线性变换(激活函数):加权和的结果经过一个非线性函数变换,让神经元计算具备非线性的能力。

多层连接

大量这样的节点按照不同的层次排布,形成多层的结构连接起来,即称为神经网络。

前向计算

从输入计算输出的过程,顺序从网络前至后。

计算图

以图形化的方式展现神经网络的计算逻辑又称为计算图,也可以将神经网络的计算图以公式的方式表达:

模型假设

提出假设的方法,例如牛顿的第二定律,运用斜滑动法和平滑动法
世界上的可能关系千千万,漫无目标的试探YYY~XXX之间的关系显然是十分低效的。因此假设空间先圈定了一个模型能够表达的关系可能,

评价函数

损失函数:模型预测值和真实值差距的评价函数
寻找最优之前,我们需要先定义什么是最优,即评价一个YYY~XXX关系的好坏的指标。通常衡量该关系是否能很好的拟合现有观测样本,将拟合的误差最小作为优化目标。

优化算法

实现损失最小的方法称为优化算法,也成为寻解算法
设置了评价指标后,就可以在假设圈定的范围内,将使得评价指标最优(损失函数最小/最拟合已有观测样本)的YYY~XXX关系找出来,这个寻找最优解的方法即为优化算法。最笨的优化算法即按照参数的可能,穷举每一个可能取值来计算损失函数,保留使得损失函数最小的参数作为最终结果。

作业

1、类比牛顿第二定律的案例,在你的工作和生活中还有哪些问题可以用监督学习的框架来解决?模型假设和参数是什么?评价函数(损失)是什么?
在这里插入图片描述

2、为什么说深度学习工程师有发展前景?怎样从经济学(市场供需)的角度做出解读?
在这里插入图片描述
为什么要以均方误差作为损失函数?
即将模型在每个训练样本上的预测误差加和,来衡量整体样本的准确性。这是因为损失函数的设计不仅仅要考虑“合理性”,同样需要考虑“易解性”

神经网络的标准结构中每个神经元由加权和与非线性变换构成,然后将多个神经元分层的摆放并连接形成神经网络。线性回归模型可以认为是神经网络模型的一种极简特例,是一个只有加权和、没有非线性变换的神经元(无需形成网络)

在这里插入图片描述

读入数据

import numpy as np
import json

datafile = './work/housing.data' # 50614列
data = np.fromfile(datafile,sep=' ') # 7084 = 14 * 506,一行数据显示
data

数据形状变换

已知,一个房子的13种影响因素,存储在x矩阵中,以及该房子的房价y。

那么N个房子的表示则是:x[ ] N x13, 即N行13列,y[ ] Nx1,即N行1列。

# 14个影响房价的特征,X
feature_names = ['CRIM', 'ZN', 'INDUS', 'CHAS', 'NOX', 'RM', 'AGE','DIS', 
                 'RAD', 'TAX', 'PTRATIO', 'B', 'LSTAT', 'MEDV']
# 长度14
feature_num = len(feature_names) # 14# print(data.shape[0] // feature_num)  # 7084//14 向下取整保留整数
# 14*506/1414
# 即506*14 这个维度的,行506,列14
data = data.reshape([data.shape[0]// feature_num), feature_num])
 

数据集划分

在这里插入图片描述

# 取data的80%的数据,训练集
ratio  = 0.8
# data.shape[0] = 506
# data[0] = 14 14个数据
# 测试数据值506*0.8
offset = int(data.shape[0]*ratio)
# 寻来数据集,按列切分,从0到offset
training_data = data[:offset]
# 输出40414列
training_data.shape
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

向上Claire

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值