9-8==prompt代码实现

本文探讨了在Bz中使用预训练模型进行任务定义和模板构建的过程,强调了Verbalizer(描述器)在整合PLM、模板中的作用。尽管遇到数据不清晰的问题,但仍然完成了数据封装并进行了训练与预测。文章揭示了在信息技术领域,特别是在自然语言处理中,如何克服这些挑战并实现有效模型训练的关键步骤。
摘要由CSDN通过智能技术生成

前几步来不及看了

好烦!!
而且Bz里面不清晰

第一步:定义任务

定义预训练模型

在这里插入图片描述

定义plm

在这里插入图片描述

定义模板

在这里插入图片描述

描述器Vertalizer

把PLM,模板,Verbalizer(描述器)放在一起

在这里插入图片描述

数据封装

在这里插入图片描述

训练&预测

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

向上Claire

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值