中文文本分类

12 篇文章 0 订阅 ¥59.90 ¥99.00
本文介绍了一个文本分类实战项目,涵盖模型预处理、构建和损失函数。讨论了词袋模型的问题,如one-hot表示的维度过大和信息丢失。同时,解释了词向量表格的获取方式,包括模型学习和随机初始化,并提到了如何生成词表及处理未知词汇和批次处理的策略。
摘要由CSDN通过智能技术生成

手把手带你做一个文本分类实战项目(模型+代码解读)

https://www.bilibili.com/video/BV15Z4y1S7aR/?spm_id_from=333.788.recommend_more_video.-1&vd_source=c47fbb8166930edc486d8fdc405bf569

在这里插入图片描述
中文汉字对应的数字索引
之后对应的数字索引
之后找到tokn embedding的东西

1、模型预处理
2、模型构建
3、损失函数构建

词袋模型

在这里插入图片描述

我们得到了单词的向量表示
那么我们如何得到文本的向量表示
再所有的词出现变为0

在这里插入图片描述

词袋模型的问题在哪里?

词袋模型也有一种表示叫做one-hot表示
我和

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

向上Claire

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值