Seq2Seq
最早是用来做机器翻译的。

是一个encoder和decoder的架构
encoder是给一个句子,比如Hello Word,然后要翻译成法语的句子
Hello word 之后给信息压到这个地方,然后就去输出一个法语的内容
编码器是一个RNN,读取输入句子
把最后那个时刻的隐层状态传给解码器,这个状态包括了整个源码句子的信息,这个东西可以是双向的,双向的不能做语言模型,但双向可以做翻译,decoder要预测,encoder不需要
encoder可以看到整个句子,所以可以正向看一下,反向看一下,双向RNN经常会用在Encoder里面
双向RNN用来encoder里面
给定隐藏状态,之后给定一个输出
上一层的翻译做下一层的输出,得到整个原句子的输出
这样子对长度是可以变换的
所以我们可以看到不管原句子多长还是什么多长都可以
decoder一直往前走,走到看到句子的结束
隐藏状态过来,给原句子的隐层状态之后给一个输出开

Seq2Seq模型主要用于机器翻译,采用encoder-decoder架构。encoder通过RNN读取源语言句子,双向RNN常用于增强信息捕获。decoder利用encoder的最终隐状态开始翻译,BLEU分数评估翻译质量。
订阅专栏 解锁全文
3755

被折叠的 条评论
为什么被折叠?



