Seq2Seq

12 篇文章 0 订阅 ¥59.90 ¥99.00
24 篇文章 1 订阅
Seq2Seq模型主要用于机器翻译,采用encoder-decoder架构。encoder通过RNN读取源语言句子,双向RNN常用于增强信息捕获。decoder利用encoder的最终隐状态开始翻译,BLEU分数评估翻译质量。
摘要由CSDN通过智能技术生成

Seq2Seq

最早是用来做机器翻译的。

在这里插入图片描述
是一个encoder和decoder的架构

encoder是给一个句子,比如Hello Word,然后要翻译成法语的句子
Hello word 之后给信息压到这个地方,然后就去输出一个法语的内容

编码器是一个RNN,读取输入句子

把最后那个时刻的隐层状态传给解码器,这个状态包括了整个源码句子的信息,这个东西可以是双向的,双向的不能做语言模型,但双向可以做翻译,decoder要预测,encoder不需要

encoder可以看到整个句子,所以可以正向看一下,反向看一下,双向RNN经常会用在Encoder里面

双向RNN用来encoder里面

给定隐藏状态,之后给定一个输出

上一层的翻译做下一层的输出,得到整个原句子的输出

这样子对长度是可以变换的

所以我们可以看到不管原句子多长还是什么多长都可以

decoder一直往前走,走到看到句子的结束

隐藏状态过来,给原句子的隐层状态之后给一个输出开

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

向上Claire

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值