用义原来改进单词表示学习
Yilin Niu1∗, Ruobing Xie1∗, Zhiyuan Liu1,2 †, Maosong Sun1,2
Abstract
单词义素信息可以改善单词表示学习(WRL),它将单词映射到低维语义空间,并作为许多NLP任务的基本步骤。
Related Work
Word Representation
Word Sense Disambiguation and Representation Learning
词义消歧与表征学习
WSD
词义消歧(WSD)的目的是在一定的上下文中通过计算来识别词义或意义。
Methodology
框架 Sememe-Encoded WRL(SE-WRL) that considers sememe information for word sense disambiguation and representation learning.

该研究提出了一种名为SE-WRL的框架,利用义原信息改进单词表示学习,解决词义消歧问题。通过简单的义原聚合模型(SSA)、上下文义原注意模型(SAC)和目标义原注意模型(SAT),模型能够更好地捕捉单词的语义,并在单词相似性和词义消歧任务中表现出优势。
订阅专栏 解锁全文
644

被折叠的 条评论
为什么被折叠?



