Improved Word Representation Learning with Sememes

12 篇文章 0 订阅 ¥59.90 ¥99.00
24 篇文章 1 订阅
该研究提出了一种名为SE-WRL的框架,利用义原信息改进单词表示学习,解决词义消歧问题。通过简单的义原聚合模型(SSA)、上下文义原注意模型(SAC)和目标义原注意模型(SAT),模型能够更好地捕捉单词的语义,并在单词相似性和词义消歧任务中表现出优势。
摘要由CSDN通过智能技术生成

用义原来改进单词表示学习

Yilin Niu1∗, Ruobing Xie1∗, Zhiyuan Liu1,2 †, Maosong Sun1,2

Abstract

单词义素信息可以改善单词表示学习(WRL),它将单词映射到低维语义空间,并作为许多NLP任务的基本步骤。

Related Work

Word Representation

Word Sense Disambiguation and Representation Learning

词义消歧与表征学习
WSD
词义消歧(WSD)的目的是在一定的上下文中通过计算来识别词义或意义。

Methodology

框架 Sememe-Encoded WRL(SE-WRL) that considers sememe information for word sense disambiguation and representation learning.

Sememes, Senses and Words in HowNet

<
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

向上Claire

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值