所有同类的语义项构成一个树状结构,要计算语义项之间的距离,只要计算树状结构中相应结点的距离
《知网》中词汇语义相似度的计算存在以下的问题:
1、one to more
2、KDML
一些基本概念
词语相关度
词语相似度
这篇文章写的有错误,attribute应该是属性
基本义原:事件、实体、属性、属性值、数量、数量值、次要特征
语法义原:syntax
关系义原:动态角色、动态属性
^ 表示不存在,或没有,或不能
关系符号 # % $ * + & @ ? !
概念之间的关系=》
关系义原=》
关系符号=》反关系
词语相似度计算
我们就把两个词语之间的相似度问题归结到了两个概念之间的相似度问题。
当然,我们这里考虑的是孤立的两个词语的相似度。如果是在一定上下文之中的两个词
语,最好是先进行词义排歧,将词语标注为概念,然后再对概念计算相似度。
义原相似度计算
有一个距离d
这种方法只利用了义原的上下位关系
虚词概念的相似度的计算
“{句法义原}”或“{关系义原}”这两种方

本文研究了《知网》中词汇语义相似度的计算,涉及词语相关度、义原相似度、虚词与实词概念的相似度计算。讨论了计算过程中的问题,如one to more、KDML,并提出了特征结构、集合和实体概念的相似度计算方法。实验结果显示,计算方法揭示了《知网》定义的不合理之处。
订阅专栏 解锁全文
878

被折叠的 条评论
为什么被折叠?



