基于《知网》的词汇语义相似度计算 Word Similarity Computing Based on How-net

12 篇文章 0 订阅 ¥59.90 ¥99.00
24 篇文章 1 订阅
本文研究了《知网》中词汇语义相似度的计算,涉及词语相关度、义原相似度、虚词与实词概念的相似度计算。讨论了计算过程中的问题,如one to more、KDML,并提出了特征结构、集合和实体概念的相似度计算方法。实验结果显示,计算方法揭示了《知网》定义的不合理之处。
摘要由CSDN通过智能技术生成

所有同类的语义项构成一个树状结构,要计算语义项之间的距离,只要计算树状结构中相应结点的距离

《知网》中词汇语义相似度的计算存在以下的问题:
1、one to more
2、KDML

一些基本概念

词语相关度
词语相似度

这篇文章写的有错误,attribute应该是属性

基本义原:事件、实体、属性、属性值、数量、数量值、次要特征
语法义原:syntax
关系义原:动态角色、动态属性

^ 表示不存在,或没有,或不能
关系符号 # % $ * + & @ ? !

概念之间的关系=》
关系义原=》
关系符号=》反关系

词语相似度计算

我们就把两个词语之间的相似度问题归结到了两个概念之间的相似度问题。
当然,我们这里考虑的是孤立的两个词语的相似度。如果是在一定上下文之中的两个词
语,最好是先进行词义排歧,将词语标注为概念,然后再对概念计算相似度。

义原相似度计算

有一个距离d

这种方法只利用了义原的上下位关系

虚词概念的相似度的计算

“{句法义原}”或“{关系义原}”这两种方

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

向上Claire

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值