基于词嵌入和矩阵分解的词汇义素预测
Ruobing Xie1∗, Xingchi Yuan1∗, Zhiyuan Liu1,2†, Maosong Sun1,2
和 Improved Word Representation Learning with Sememes 这篇是一个作者
Abstract
人工构造义原麻烦==》基于词嵌入编码的词的语义自动预测预测词汇义原的方法
利用矩阵分解来学习==》来预测义原与词语之间的语义关系
该方法对现有噪声义原知识库的标注验证和新单词短语的标注建议具有重要的应用价值
Introduction
SPWE:义原预测和词嵌入
SPSE:义原预测和义原嵌入
首次提出自动预测单词的义原
之后在Hownet进行评估
Related Work
Factorization Machines [Rendle, 2010]
namely collaborative filtering [Sarwar et al., 2001] and
matrix factorization [Koren et al., 2009].
Methodology
不管关系,只提出义原,义原组合在一

该研究提出了一种基于词嵌入和矩阵分解的方法,用于自动预测词汇的义原,旨在解决人工构造义原的难题。通过对Hownet和Sogou-T数据集的实验,验证了模型的有效性,对未来义原知识库的标注和新词短语的标注具有指导意义。
订阅专栏 解锁全文
453

被折叠的 条评论
为什么被折叠?



