2019-2020 A 第1学期
| 1、差商 | ||
| 2、切比雪夫正交多项式 | 权函数 | |
| 3、||A||1 | 列的绝对值相加 | |
| 4、辛普森公式 | 注意前面的是b-a /6 中间的是4 | |
| 5、牛顿下山法的条件 | |f(xk+1)<|f(xk)| | |
| 6、求什么的近似值,之后牛顿迭代公式为 | ||
| 7、拉格朗日多项式 | ||
| 8、求余项 | ||
| 9、收敛阶达到2的牛顿迭代格式 | ||
| 10、杜利特尔 | ||
| 11、条件数 | ||
| 12、迭代过程收敛的条件 | ||
| 13、复合梯形公式 | ||
| 14、严格对角占优收敛 | ||
| 15、最小n阶,最大2n+1 | ||
| 16、limak就是p(a)<1 | ||
| 17、收敛的充要条件 | ||
| 18、相对误差 | ||
| 二、J与G | 1、Jacobi 和Gauss-Seidel迭代格式,迭代第一步 2、分析收敛性 3、收敛速度 | |
| 三、高斯求精度 | (1)证明是以节点为求积节点的插值型求积公式 | A0是求积之后插值,之后进行对比 插值型求积公式的节点是高斯点的充分必要条件是以这些节点为零点的多项式与任何次数不超过n的多项式p(x)带权p(x)正交 |
| (2)找出代数精确度 | 有三个求积节点,所以代数精度为2,之后进行对比 | |
| (3)求得求积公式的余项 | k(m+1)的求导 之后k的值 | |
| (4)计算求积公式 | ||
| 四、插值 | (1)拉格朗日插值多项式,余项 | 就是插值,x减去不是自己的,之后带入减去不是自己的 |
| (2)牛顿插值多项式 | 插值表 | |
| (3)离散拟合 | 一阶,二阶这些之后就可以求出c0和c1 | |
| 五、最佳平方逼近多项式 | 最佳平方逼近多项式 | xsinx的0到Π就是Π |
| 六、埃尔米 | ||
| 七、牛顿迭代+非牛顿迭代,收敛性 | (1)实根 (2)牛顿迭代 (3)非牛顿迭代格式 | xk+1 = xk-f(xk)/f'(xk) x属于[a,b]之后a<= 迭代函数<=b 之后就求导小于1 |
15-16 A 第一学期
| 一、二次牛顿插值多项式 | ||
| 二、最小二乘拟合曲线 | ||
| 三、尽量高的代数精度 | 3个未知数 | |
| 四、勒让德、高斯点 | 零点高斯点,n=3 | |
| 五、最佳平方逼近 | 内积 | |
| 六、LU,求AX=b | ||
| 七、J,G | 对称矩阵,aii>0 a正定 高收 2d-a 正定 收敛 | |
| 八、牛顿迭代 | ||
2014-2015 A
| 1、提高数值精度??? | ||
| 2、差商 | ||
| 3、切比雪夫正交多项式的权函数 | ||
| 4、n个节点的插值型求积公式的代数精度至少为n-1 | ||
| 5、无穷的条件数 | ||
| 6、|3E-A|=0,谱半径大于等于3 | ||
| 7、特别重要!!!!1 | ||
| 选3: | n(n+1)/2 | |
| 选4:收敛 | ||
| 选5: | 牛顿法是不动点迭代的一个特例 | |
| 3.1复合梯形公式、复合辛普森公式 | ||
| 3.2 最高的代数精度 | ||
| 3.3 牛顿(这题估计不会考) | ||
| 3.4 最佳平方逼近多项式 | ||
| 3.5 LU分解 | ||
| 四 J.G | ||
| 五 Hermite | ||
2014-2015 B
| 1.1 n+1个节点最高 | 2n+1 | |
| 1.2 勒让德正交多项式的权函数 | 1 | |
| 1.3 差商 | ||
| 1.4 迭代的充分必要条件 | ||
| 1.5 条件数无穷 | ||
| 2.1 | ||
| 2.2 追赶法 | ||
| 2.3 谱半径 | ||
| 2.4 非线性方程牛顿法 | ||
| 2.5 J,G | ||
| 3.1 拉格朗日多项式 | ||
| 3.2 复合辛普森 | ||
| 3.3 是否为插值型求积公式 为什么 精度是什么 | ||
| 3.4 最小二乘法拟合 | ||
| 3.5 LU | ||
| 4.1 J,G | ||
| 4.2 牛顿 | ||
2013~2014 A
| 一、拉格朗日插值 | ||
| 二、最小二乘法求一次拟合多项式 | ||
| 三、求积系数和代数精度 | 并不是求插值注意!!!!!!! | |
| 四、复合梯形、复合辛普森 | ||
| 五、LU | ||
| 六、差商和牛顿 | ||
| 七、JG | ||
| 八、牛顿收敛 | ||
2013~2014 B
| 一.1 n次Lagrange插值基函数 | |
| 一2 差商 | |
| 一3 n+1互异节点 最高 2n+1 最少 n | |
| 一4 向量的无穷 | |
| 二1 二次牛顿插值多项式 | |
| 三 梯形公式和辛普森公式 | |
| 四 尽可能高的代数精度 | |
| 五 牛顿法 | |
| 六 最小二乘拟合(曲线) | |
| 七 LU | |
| 八 J,G |
2012~2013 B
| 一1 差商 | |
| 一2 牛顿-科特斯系数 | |
| 一3 差商与导数的关系 | |
| 一4 行范数 | |
| 一5 边长误差 | |
| 一6 代数精度 | |
| 一7 范数 | |
| 二 JG | |
| 三 牛顿法 | |
| 四、最佳一致逼近多项式 | |
文章讨论了数值分析中的关键概念,包括差商、切比雪夫多项式、矩阵范数、牛顿下山法以及Jacobi和Gauss-Seidel迭代格式。重点讲述了二次牛顿插值、最小二乘拟合、代数精度、拉格朗日多项式、LU分解和牛顿法的收敛性。内容涵盖从基本的插值理论到高级的迭代方法和矩阵理论。

被折叠的 条评论
为什么被折叠?



