- 博客(1024)
- 资源 (69)
- 收藏
- 关注
原创 NLP Day 45 Tool Learning with Foundation Models
人类拥有创造和利用工具的非凡能力,使他们能够克服身体限制,探索新的领域。随着最近强大的基础模型的出现,人工智能系统有可能像人类一样熟练地使用工具。这种范式被称为工具学习与基础模型,它结合了专业工具和基础模型的优势,以提高解决问题的准确性、效率和自动化。尽管潜力巨大,但对该领域的关键挑战、机遇和未来努力仍缺乏全面的了解。为此,本文对工具学习进行了系统的调查和全面的回顾。我们首先介绍了工具学习的背景,包括它的认知起源、基础模型的范式转变以及工具和模型的互补作用。
2023-10-09 15:10:38
145
原创 面试题 202301 什么是*args和 **kwargs?
允许函数接受不定数量的位置参数和关键字参数,使函数更加灵活和通用。增加了函数的灵活性,使其能够处理不同数量和类型的参数,而不需要在函数定义时明确定义每个参数。
2023-09-29 13:46:29
99
原创 【Django】学习
python知识点:函数,面向对象前端开发:HTML,CSS,JavaScript,jQuery,BootStrapMySQL数据库Python的Web框架Flask,自身短小精悍 + 第三方组件Django,内部已集成了很多组件 + 第三方组件。
2023-08-14 16:34:43
73
原创 GUI编程
这是一个使用tkinter库创建了一个简单的GUI窗口的python代码示例 # tkinter 使python中内置的标准GUI库 from tkinter import * # 创建一个TK窗口top = Tk() # 创建一个标签并设置文本内容为 "hello world" label = Label(top , text = 'hello world') # 将标签添加到窗口中label . pack() # 创建一个label标签,用于显示指定的文本内容。
2023-07-28 20:02:34
53
原创 hidden_states = outputs.matmul(self.bert_model.bert.get_input_embeddings().weight) 中文解释
假设outputs的形状为(batch_size, sequence_length, hidden_size),其中batch_size表示批次大小,sequence_length表示输入序列的长度,hidden_size表示BERT模型的隐藏状态大小。这个权重矩阵的形状是(vocab_size, hidden_size),其中vocab_size表示词汇表的大小,hidden_size表示BERT模型的隐藏状态大小。这行代码是对BERT模型的输出进行处理的操作,其中涉及到矩阵乘法和权重矩阵的使用。
2023-07-27 18:34:25
326
原创 论文阅读|Try to Substitute: An Unsupervised Chinese Word Sense Disambiguation Method Based on HowNet
论文阅读
2023-06-08 18:54:39
242
1
原创 UnicodeDecodeError: ‘utf-8‘ codec can‘t decode bytes in position 1022-1023: unexpected end of data
已连接到 pydev 调试器(内部版本号 222.4167.33)Traceback (most recent call last):出现这个错误。
2023-04-13 11:05:23
377
原创 寻找失物信
Dear Thomas,I have returned safely to my home in Shanghai , and wish to thank you for everything you did for me . I really enjoyed my stay in the US.However, I regret to tell you that upon my arrival in Shanghai I suddenly discovered that I had left my _
2023-02-27 21:03:08
123
原创 avoid plagiarism
(5)如果你希望每篇参考文献引用多个研究,也就是说,如果多个作者得出了相同的结论或独立研究了同一个问题,你可以将他们放在同一个括号中,并用分号分隔他们的名字。按照惯例,这些引用是按时间顺序列出的。(1)总结或转述作者的思想,并在句末的括号中写上作者的姓氏和出版日期。(2)在文章中直接引用作者,并在括号中注明出版日期。(3)在文章中直接引用作者,并在括号中注明出版日期。(4)在文章中直接引用作者,并在括号中注明出版日期。
2023-02-27 21:01:09
142
原创 英语写作作文-Reference
The reference section should begin on a new page. ( F )Generally, the subtitles References/ Works Cited/Bibliography will be put at the beginning of the left margin, while occasionally in the center.( T )Do not number the entries.( T )Begin the fi
2023-02-27 21:00:35
190
原创 数值分析卷子分析
插值型求积公式的节点是高斯点的充分必要条件是以这些节点为零点的多项式与任何次数不超过n的多项式p(x)带权p(x)正交。就是插值,x减去不是自己的,之后带入减去不是自己的。4、n个节点的插值型求积公式的代数精度至少为n-1。有三个求积节点,所以代数精度为2,之后进行对比。一3 n+1互异节点 最高 2n+1 最少 n。(1)证明是以节点为求积节点的插值型求积公式。6、求什么的近似值,之后牛顿迭代公式为。注意前面的是b-a /6 中间的是4。A0是求积之后插值,之后进行对比。(1)拉格朗日插值多项式,余项。
2023-02-24 23:10:21
144
原创 基于词嵌入和矩阵分解的词汇义素预测
人工构造义原麻烦==》基于词嵌入编码的词的语义自动预测预测词汇义原的方法利用矩阵分解来学习==》来预测义原与词语之间的语义关系该方法对现有噪声义原知识库的标注验证和新单词短语的标注建议具有重要的应用价值。
2023-01-28 20:49:30
183
原创 基于《知网》的词汇语义相似度计算 Word Similarity Computing Based on How-net
所有同类的语义项构成一个树状结构,要计算语义项之间的距离,只要计算树状结构中相应结点的距离《知网》中词汇语义相似度的计算存在以下的问题:2、KDML。
2023-01-28 19:59:47
335
原创 Improved Word Representation Learning with Sememes
单词义素信息可以改善单词表示学习(WRL),它将单词映射到低维语义空间,并作为许多NLP任务的基本步骤。
2023-01-28 18:43:31
161
原创 Convolutional LSTM Network: A Machine Learning Approach for Precipitation Nowcasting
扩展全连接LSTM(FC-LSTM),使其再输入到状态和状态的转换中都具有卷积结构,我们提出了卷积LSTM(ConvLSTM)
2023-01-22 20:14:09
571
原创 面向语义检索的中医理论知识库构建方法的研究+基于HowNet的航空术语语义知识库的构建
1、语义角色={义原}语义角色=”具体词“2、{KaTeX parse error: Expected 'EOF', got '}' at position 1: }̲表示的是被的意思,可以被保存3、怎么说呢,对我并不是很有意义。义原表:99个义原构成的描述义原间上下位关系的树状结构,然后通过给定的理论中知识的关系类别树状给网状KDML的知识表示特定的标识符实现义原的组合构成语义表达式。
2023-01-10 11:27:58
186
原创 LSTM模型介绍
根据反向传播的算法和链式法则soigmoid的导数值域是固定的,在[0,0,25]之间,一旦w小于1,那么梯度会非常非常小,梯度消失w大于1,之后连乘可能会造成梯度过大,就是梯度爆炸当前时间步输入x(t)与上一个时间步隐含状态h(t-1)拼接,得到[x(t),h(t-1)],通过一个全连接层做变换,最后通过sigmoid函数进行激活得到f(t)拼接,全连接层,sigmoid双向LSTM,将LSTM应用两次且方向不同,再将两次得到的LSTM结果进行拼接作为最终输出GRU内部结构分析。
2023-01-08 22:59:00
3255
原创 分词+数据增强方法
在一个batchsize中随机取两个随机的句子,之后填充相同的长度,之后按比例混合,之后新的mix-up word embeddings。在文本中加入注入噪声,来生成新的文本,最后使得训练的模型对扰动具有鲁棒性。词典:[“我们”,“经常”,“有”,“有意见”,“意见”,“分歧”]去替换原始文本中某一部分,而不改变句子本身的意思。随机去一个单词,将其替换为对应的同义词。概率p随机删除句子中的每个单词。句子的embedding的混合。让我匹配到的单词是越长越好的。给定一个条件,生成一个句子。
2023-01-07 16:10:14
178
原创 Seq2Seq
把最后那个时刻的隐层状态传给解码器,这个状态包括了整个源码句子的信息,这个东西可以是双向的,双向的不能做语言模型,但双向可以做翻译,decoder要预测,encoder不需要。encoder可以看到整个句子,所以可以正向看一下,反向看一下,双向RNN经常会用在Encoder里面。隐藏状态过来,给原句子的隐层状态之后给一个输出开始翻译,把上一个刻的翻译是下一刻的输入。encoder是给一个句子,比如Hello Word,然后要翻译成法语的句子。上一层的翻译做下一层的输出,得到整个原句子的输出。
2023-01-04 23:24:24
193
原创 【HowNet and the Computation of Meaning】回顾前六章
语言中的各种歧义(单词、形态学形式、句法结构、省略、指代)都可以归为意义问题消除歧义需要依靠意义的计算,之后不同层次的意义计算需要各种知识资源。
2023-01-03 18:24:58
201
原创 【NLP】Pycharm安装配置Pyside6
创建一个QApplication对象,参数sys.argv,sys.argv表示的是命令行参数,是一个列表类型。在PySide里面有三个主要的模块,分别是QtWidgets, QtGui 和 QtCore。每一个 Qt 程序都需要并只能有一个实例化QApplication类。这里创建一个QWidget窗口类,并调用show()方法显示出来。运行Pycharm在设置里点击“外部工具”,点击“+”。当我们使用命令行来运行时,里面保存了命令行后面跟的桉树。还是不行,一直都很慢,一直都报错!
2023-01-03 16:57:49
824
原创 NNLM-pytorch
提出了神经网络语言模型。该模型使用前n-1词来预测第n个词,计算概率p(wn|w1,w2,````,wn-1)。首先先将前n-1个词用one-hot表示,然后使用投影矩阵降维,再将降维后的n-1个词的表示拼接起来,Bengio将神经网络引入语言模型的训练中,并得到了词向量这个副产物。词向量对后面深度学习在自然语言处理方面有很大的贡献,也是获取词的语义特征的有效方法。现在的任务:输入wt-n+1,````wt-1.这前n-1个单词,然后预测出下一个单词wt。
2022-12-31 00:55:36
134
原创 transformer中
学习了什么是前馈全连接层在transformer中前馈全连接层就是具有两层线性层的全连接网络考虑注意力机制可能对复杂过程的拟合程度不够,通过增加两层网络来增强模型的能力学习并实现了前馈全连接层的类:PositionwiseFeedForward它的实例化参数为d_model,d_ff,dropout分别代表词嵌入维度,线性变换维度,和置零比率它的输入参数x,表示上层的输出它的输出是经过2层线性网络变换的特征表现。
2022-12-29 23:04:58
188
原创 中文文本分类
手把手带你做一个文本分类实战项目(模型+代码解读)中文汉字对应的数字索引之后对应的数字索引之后找到tokn embedding的东西1、模型预处理2、模型构建3、损失函数构建。
2022-12-24 16:50:39
499
原创 卷积神经网络
能够将提取到的特征集合在一起,给出图片可能是某个事物的概率。训练,根据已有的图片,数字来自动的确定已有的数字。CNN中,存在着一个个填充数字的正方形小格子。拥有5个卷积层的AlexNet为例。特征图:这层的输出也是下层的输入。CNN非常擅长处理图像。
2022-12-24 10:14:23
111
原创 k-nearest neighbor classification(KNN)
k-nearest neighbor classification(KNN)
2022-12-22 11:04:23
123
原创 KNN学习
并不是KNN 是k-Nearest NeighborsK 近邻算法 是机器学习中常见的分类算法要判断一个新数据的类别就要看他的邻居都是谁KNN 中的K指的是【K个】邻居eg: K=3 就是通过离得最近得3个样本,来判断新数据的类别大小、颜色是数据的特征苹果和梨是数据的【标签】欧式距离:两点之间的直线距离坐标轴距离的绝对值的和:曼哈顿距离K的值太小,会受到个别因素的影响K的值太大,又会受距离较远的特殊数据影响K的取值受问题自身和数据集大小决定。
2022-12-17 19:11:26
285
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人
RSS订阅