1080ti和2080ti对比深度学习使用

https://blog.csdn.net/u013166171/article/details/89479687

如果是单玩游戏,那么2080ti最好,光线追踪,而且双卡复用需要游戏支持,所以一般只能发挥单卡性能,那自然2080ti。

如果是深度学习的话,那就有的谈了,

结论:纯综合算力而言1080ti,单卡算力2080ti,性价比1080ti.

float16算力而言:两个1080ti不如2080ti(以两个1080ti并行算力达1.8算)

float32算力而言:能并行任务两个1080ti(以两个1080ti并行算力达1.8倍算)胜。

复杂度而言:2080ti安装维护更简单

任务形式而言:多个学生同时跑不同实验就1080ti,只主要跑一个实验推荐2080ti

但双卡需要耗费更多槽位,功耗提升,散热问题,cpu内存主板也需要同时考虑,而且1080ti二手矿卡多,可能也会造成成本接近类似的情况(2080ti花屏问题不知道解决没有)。

 

4月20号目前市价假设:

1080ti 6500

2080ti 11000

根据几大网站对于经典网络(VGG,resnet)的统计如下:

https://www.quora.com/Which-GPU-is-better-for-deep-learning-GTX-2080-Ti-or-Titan-V

及另外一个网站统计:

https://bizon-tech.com/us/blog/gtx1080ti-titan-rtx-2080-ti-deep-learning-benchmarks

按照上面统计,从单张1080ti 6500元 去按照算力实际提升算单张2080ti的价格

bizon 16fp 8695元 32fp 8400元

lamdba 16fp 11206元 32fp 8783元

而实际目前观察到的市价是11000,

可以看到除了fp16有足值提升外,32fp是有性价比不足的问题的。

将2080ti相对1080ti的算能提升比在单次评估和多次训练及vgg resnet网络统计对比如下:

长时间 单次评估

‘vgg 0.77 0.74

resnet 0..69 0.72

这意味着,对于网络结构而言,越深越复杂网络训练评估中2080ti相对耗时减少效应越明显。

而同一网络是否会因为训练时间延长而使得2080ti耗时减少越明显尚不得而知。

而如果是fp64的话,那还是titan v吧,理由如下:深度学习 显卡 硬件

https://www.quora.com/Which-GPU-is-better-for-deep-learning-GTX-2080-Ti-or-Titan-V

    参考资源链接:[深度学习必备:免费使用GPU](https://wenku.csdn.net/doc/645320dcea0840391e76ead5?utm_source=wenku_answer2doc_content) 在Google Colab上使用NVIDIA 1080Ti进行深度学习训练,首先需要了解Colab提供的免费GPU资源以及如何配置环境。推荐你查看《深度学习必备:免费使用GPU》来获取更多实用信息。 Google Colab是基于Jupyter Notebook的一个在线开发环境,它为开发者提供了包括GPU和TPU在内的强大计算资源。为了使用NVIDIA 1080Ti,你需要按照以下步骤操作: 1. 在Colab中,点击“运行时”菜单,然后选择“更改运行时类型”。 2. 在弹出的窗口中,将硬件加速器选择为“GPU”。 3. 保存配置后,你的Colab笔记本将连接到一个GPU实例。 4. 由于Google Colab默认使用TensorFlow和PyTorch作为深度学习框架,你可以直接导入相应的库开始编写你的深度学习代码。 5. 为了确保你的环境可以利用1080Ti进行训练,可以安装额外的深度学习相关库,如CUDA和cuDNN。 6. 你可以通过安装 tensorflow-gpu 或 torch torchvision torchaudio 等包来确保深度学习框架可以利用GPU加速。 7. 使用nvidia-smi命令来查看当前GPU的状态和使用情况,确保1080Ti已经被正确识别和使用。 8. 接下来,你就可以开始你的深度学习训练任务了,例如使用TensorFlow或PyTorch构建模型、加载数据、训练模型等。 通过以上步骤,你可以在Google Colab上配置并使用NVIDIA 1080Ti进行深度学习的训练。对于更深入的学习,我建议你还应该查看《深度学习必备:免费使用GPU》,这本资料将为你提供关于如何在Colab中更有效地利用GPU资源的全面信息和高级技巧。 参考资源链接:[深度学习必备:免费使用GPU](https://wenku.csdn.net/doc/645320dcea0840391e76ead5?utm_source=wenku_answer2doc_content)
    评论
    添加红包

    请填写红包祝福语或标题

    红包个数最小为10个

    红包金额最低5元

    当前余额3.43前往充值 >
    需支付:10.00
    成就一亿技术人!
    领取后你会自动成为博主和红包主的粉丝 规则
    hope_wisdom
    发出的红包
    实付
    使用余额支付
    点击重新获取
    扫码支付
    钱包余额 0

    抵扣说明:

    1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
    2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

    余额充值