图像生成
答复
AIchiNiurou
cv
展开
-
Gan的几篇论文--人工智能基础(高中版)
原创 2020-05-29 23:54:47 · 185 阅读 · 0 评论 -
text to image生成模型
摘要 文本生成图像作为近几年的热门研究领域,其解决的问题是从一句描述性文本生成与之对应的图片。近一周来,我通过阅读了近几年发表于顶会的近10篇论文,做出本文中对该方向的简要报告。报告中主要阐述了近几年最流行的解决方案——以GAN思想为主干的解决方案。首先我对现有方法进行了简单回顾,之后针对这些方法做出了自己的总结,将各方法中用来提升生成...转载 2020-05-29 23:48:35 · 1485 阅读 · 2 评论 -
光流 数据空间和数据分布的概念--迁移学习人工智能基础(高中版)
数据集:UCF101Youbube 13320个视频,101分类光流深度学习视频行为识别聚类GAN数据空间、数据分布我们已经知道数据对人工智能系统的重要性,生成模型也不例外。假如,我们的目标是让计算机从无到有自动生成看起来像大牌明星的图片,就要提供大量的明星照片供它学习参考。在生成模型眼里,这些照片数据组成一个整体,共同勾勒出明星们的外观特点。生成模型不是要学习生成某个特定的明星的照片,而是要把握这些照片整体上的特点,生成有“明星范儿”的图片。那么,怎么刻画数据呢?这要引人数据空间和数原创 2020-05-29 20:45:30 · 1110 阅读 · 0 评论 -
wanganji学长研究序列 triplet loss
ieee发表的文章https://www.sues.edu.cn/dd/b7/c82a187831/page.htmdomain adaptive[PDF] Analysis of representations for domain adaptation三元损失https://www.cnblogs.com/Alex0111/p/8492471.htmlTriplet loss通常是在个体级别的细粒度识别上使用,传统的分类是花鸟狗的大类别的识别,但是有些需求是要精确到个体级别,比如精确到哪个原创 2020-05-29 10:41:54 · 434 阅读 · 0 评论 -
机器学习:Gan 黄教授
问题:监督、生成模型概念Gan的生成模型和HMM、贝叶斯生成模型的区别1 train data和generator data 同分布same distribution怎么理解?是经过编码器映射后的特征空间吗从统计学的角度看generator data 和real data 同分布,学到的是z生成器fake data的分布,会不会有和完全一样的杂讯的图和real的图不同之处就是数据分布不同,比如说直方图,或者经过D编码到特征空间的分布位置??2 对数似然函数D,最大化对数似然,G,最小化D(G)原创 2020-05-29 10:22:33 · 369 阅读 · 0 评论 -
怎么将Gan用来做判别:O-Gan正交gan来做特征提取(编码)
现如今,GAN已经越来越成熟,越做越庞大,诸如BigGAN、StyleGAN等算是目前最先进的GAN模型也已被人熟知,甚至玩得不亦乐乎。不过,这几个最先进的GAN模型,目前都只有生成器功能,没有编码器功能,也就是说可以源源不断地生成新图片,却不能对已有的图片提取特征。1、随机生成效果还不错,说明新引入的相关系数项没有降低生成质量;2、重构效果还不错,说明E(x)确实提取到了x的主要特征;3、线性插值效果还不错,说明E(x)确实学习到了接近线性可分的特征。 首原创 2020-05-16 13:07:02 · 898 阅读 · 0 评论 -
Gan网络的实战陆家嘴Gan2
原创 2020-05-16 12:44:12 · 236 阅读 · 0 评论 -
特征线性可分styleGan(粗中细三层次改变图像特征)生成模型有什么用可以模拟数据的分布进而转化为判别模型
不敢相信,上面这些人脸,全都是假的。是英伟达的AI生成的。借用风格迁移的思路,团队为GAN创造了一种新的生成器。连GAN之父Goodfellow老师也忍不住发推称赞优秀!这个结构不需要人类监督,可以自动分离图像中的各种属性。这样,在或粗糙或精细的不同尺度上,人类便能自如地控制GAN的生成。另外,英伟达的人脸生成模型,支持1024 x 1024的高清大图生成。毕竟,GAN从小吃的是高清数据集。团队还说,数据集很快就要开源了。实际效果展示人物自然,背景自然,边缘又自然。足以骗过我这个普通人类的肉眼了。输入两张图转载 2020-05-16 12:39:24 · 627 阅读 · 0 评论 -
style Gan
https://medium.com/@jonathan_hui/gan-stylegan-stylegan2-479bdf256299原创 2020-04-30 14:36:46 · 164 阅读 · 0 评论 -
Gan综述RoadMap和应用:创造性工作的领域
文章目录Gan RoadKey、算法应用技巧先找(重在积累和论文阅读)现有模型(传统/深度)建立一个基础结果benchmark,然后基于此改进(效率和用户的体验性)对于数据来讲:是什么?有什么?缺什么?#对于应用:解决问题(常见模型、常见loss,常见训练trick)一、应用1 生成图像场景;艺术创作、换衣服2 上色(从分割图像到生成图像)3 从低分辨率图像生成高分辨率图像等[4].二 动漫领域的...原创 2020-04-30 14:27:32 · 700 阅读 · 0 评论 -
学习笔记:Gan-DCGan-WGan-SuperResolutionGan发展生成对抗网络
Gan是随机数据用全连接对抗生成新数据2015DCGan是随机数据用卷积网络生成新数据2016CGan条件gan用给定的语义z +条件y向量(假设语义信息是‘1’)用卷积网络生成新数据conditionWasserstein GAN (WGAN)针对gan分析解决训练和崩溃问题(可以是fn或cnn)Super-ResolutionGan超分辨率图像意义:造出新的类似但不是原样本关键点:...原创 2020-04-21 22:33:47 · 883 阅读 · 0 评论 -
CycleGan和pix2pix(前者不需要pair,后者需要)
CycleGAN是在去年三月底放在arxiv的一篇文章,文章名为Learning to Discover Cross-Domain Relations with Generative Adversarial Networks,同一时期还有两篇非常类似的 DualGAN 和 DiscoGAN ,简单来说,它们的...转载 2020-04-20 11:40:09 · 2653 阅读 · 1 评论
分享