图像分类
10
AIchiNiurou
cv
展开
-
细粒度图像分类解决方案FGVC
本文转载自机器之心。 近日,支付宝天筭安全实验室在 CVPR FGVC(细粒度视觉分类)workshop 举办的植物病理学挑战赛(Plant Pathology Challenge)中夺冠。本文介绍了冠军队伍及其解决方案。 CVPR(国际计算机视觉与模式识别会议)是由 IEEE 主办的一年一度的世界顶级计算机视觉学术性会议。大会包含多个 workshop,以及对应的许多计算机视觉算法竞赛。 其中 FGVC(细粒度视觉分类)workshop 也举办了多项竞赛,如 Plan.转载 2020-11-05 10:26:28 · 927 阅读 · 0 评论 -
imagenet分类top1最高分acc 80%(谷歌batch Normalization
原文链接: https://mp.weixin.qq.com/s/I5XgYrPCCGyfV2qTI0sJhQ深度神经网络自出现以来,已经成为计算机视觉领域一项举足轻重的技术。其中,ImageNet 图像分类竞赛极大地推动着这项新技术的发展。精确计算水平取得了稳步的增长,但颇具吸引力的模型应用尚未得到合理的利用。本文将综合分析实际应用中的几项重要指标:准确度、内存占用、参数、操作时间、操作次数、推理时间、功耗,并得出了...转载 2020-05-14 22:26:49 · 4613 阅读 · 0 评论 -
学习笔记:MobileNets: Efficient Convolutional Neural Networks for Mobile Vision
https://zhuanlan.zhihu.com/p/35405071论文地址:MobileNetv1Howard, Andrew G., et al. “Mobilenets: Efficient convolutional neural networks for mobile vision applications.” arXiv preprint arXiv:1704.04861 (...原创 2020-04-12 17:27:57 · 418 阅读 · 0 评论 -
学习笔记:SqueezeNet 精度同Alexnet(压缩后0.47M VS 240M)
S QUEEZE N ET : A LEX N ET - LEVEL ACCURACY WITH50 X FEWER PARAMETERS AND <0.5MB MODEL SIZE(一开始就用小模型训练 比 大模型剪枝pruning成小模型要 效率高的多)1 小模型的好处1 更高效地分布训练2 云端更新模型参数更快速3 小的存储和内存使用量 易应用于FPGA 现场可编程门阵...原创 2020-04-05 14:06:47 · 385 阅读 · 0 评论 -
特征提取网络(分类)
以下网络可通过torchvision.models导入import torchvision.models as modelsresnet18 = models.resnet18(pretrained=True)vgg16 = models.vgg16(pretrained=True)alexnet = models.alexnet(pretrained=True)squeezenet ...原创 2020-03-18 16:17:19 · 7866 阅读 · 0 评论
分享