AIchiNiurou
码龄6年
关注
提问 私信
  • 博客:585,670
    社区:74
    问答:3,607
    589,351
    总访问量
  • 370
    原创
  • 5,608
    排名
  • 502
    粉丝
  • 4
    铁粉
  • 学习成就

个人简介:cv

IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:江苏省
  • 加入CSDN时间: 2019-01-14
博客简介:

weixin_44523062的博客

博客描述:
学习生活
查看详细资料
  • 原力等级
    成就
    当前等级
    5
    当前总分
    1,673
    当月
    7
个人成就
  • 获得321次点赞
  • 内容获得73次评论
  • 获得1,600次收藏
  • 代码片获得499次分享
创作历程
  • 8篇
    2024年
  • 8篇
    2023年
  • 13篇
    2022年
  • 109篇
    2021年
  • 329篇
    2020年
  • 1篇
    2019年
成就勋章
TA的专栏
  • cuda
  • 算法笔记
  • 自动驾驶
    9篇
  • pcl-learning
  • 三维点云处理技术和深度学习在点云处理中的应用
  • 点云
    5篇
  • 技术积累
    22篇
  • ocean
  • c++杜
  • ros2
    1篇
  • c++学习积累
    1篇
  • tensorRTcuda
  • 无人驾驶从入门到提高
  • opencv图像处理
    2篇
  • 数据结构与算法c++
  • 点云课程学习笔记
    1篇
  • yanzhen视频分析
    11篇
  • 机器学习+数学
    41篇
  • 模式识别课程
    6篇
  • 学习工具及问题记录
    180篇
  • 计算机视觉
    49篇
  • 可以CD
    6篇
  • 可以uda
    38篇
  • 可以
    47篇
  • 模型优化轻量化
    7篇
  • 图像分类
    5篇
  • 目标检测
    31篇
  • 图像分割
    1篇
  • 目标追踪
    10篇
  • 图像描述 跨模态检索
    1篇
  • 图像生成
    12篇
  • 增强现实
  • 迁移学习-跨域自适应
    7篇
  • 视觉几何属性任务SLAM
兴趣领域 设置
  • 人工智能
    opencv计算机视觉机器学习深度学习神经网络tensorflowpytorch图像处理数据分析
创作活动更多

AI大模型如何赋能电商行业,引领变革?

如何使用AI技术实现购物推荐、会员分类、商品定价等方面的创新应用?如何运用AI技术提高电商平台的销售效率和用户体验呢?欢迎分享您的看法

176人参与 去创作
  • 最近
  • 文章
  • 代码仓
  • 资源
  • 问答
  • 帖子
  • 视频
  • 课程
  • 关注/订阅/互动
  • 收藏
搜TA的内容
搜索 取消

jap learning

1 学习教材2
原创
发布博客 2024.10.16 ·
233 阅读 ·
3 点赞 ·
0 评论 ·
0 收藏

h264解码

一下 可能链接的python3。
原创
发布博客 2024.08.09 ·
135 阅读 ·
1 点赞 ·
1 评论 ·
0 收藏

ubuntu init set

【代码】ubuntu init set。
原创
发布博客 2024.08.02 ·
254 阅读 ·
4 点赞 ·
0 评论 ·
0 收藏

单目3D和bev综述

Transformer: (DETR2d延伸)DETR3D, BEVFORMER, PETR, PETRV2。transformer 的层 一般6层,工业的话用3层,bevformer tiny 3层。自动标注: 基于sam,点云投影到图像获取点云分割 label,生成3Dboxes。Deformable attention ——> 内外参bev空间索引 图像特征。(指标 3D mAP, NDS,分割 mIOU)Transformer方案:DETR。可以查看nscenes 官网。LSS + 深度监督。
原创
发布博客 2024.07.11 ·
728 阅读 ·
24 点赞 ·
0 评论 ·
15 收藏

bevfomer self-att to transformer to tensorrt

output = 求和 query . key * value。
原创
发布博客 2024.07.11 ·
449 阅读 ·
4 点赞 ·
0 评论 ·
7 收藏

点云传统算法

统计滤波: voxel,
原创
发布博客 2024.06.16 ·
238 阅读 ·
1 点赞 ·
0 评论 ·
0 收藏

bevfusion 模型量化 尚未剪枝

shared mem 只在block内共享,device glob mem能够所有线程共享。
原创
发布博客 2024.06.15 ·
259 阅读 ·
2 点赞 ·
0 评论 ·
0 收藏

occnerf

OccNeRF方法通过自监督学习的方式,从多个摄像头的视频序列中学习场景的占用情况。它首先使用一个神经网络来估计每个像素点的辐射场属性,然后通过对辐射场进行渲染,生成虚拟的图像。这些虚拟图像与真实图像进行对比,通过最小化两者之间的差异来训练神经网络。为了实现自监督学习,OccNeRF方法还引入了一个自我重建损失函数,用于衡量生成的虚拟图像与真实图像之间的差异。通过最小化自我重建损失,神经网络可以学习到场景的占用情况,并能够在未来的时间步中进行准确的占用预测。
原创
发布博客 2024.01.07 ·
466 阅读 ·
9 点赞 ·
0 评论 ·
10 收藏

PannoOccUnified Occupancy Representation for Camera-based 3D Panoptic Segmentation

周围三维世界的综合建模是自主驾驶成功的关键。然而,现有的感知任务,比如目标检测、道路结构分割、深度和高度估计以及开放式对象定位,都只关注于整体三维场景理解任务的一小部分。这种分而治之的策略简化了算法开发过程,但代价是失去了问题的端到端统一解。在这项工作中,我们通过研究基于摄像机的三维全景分割来解决这一局限性,目的是实现一个统一的占用表示,用于只有摄像机的三维场景理解。
原创
发布博客 2023.08.11 ·
446 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

相机标定精度研究

1 外参几乎没有什么重复性误差???只要4对都正确,则刚性匹配基本正确解释:激光点云到相机 转换本身的刚性匹配,而相机坐标系到图像坐标系是非刚性匹配。
原创
发布博客 2023.06.11 ·
2570 阅读 ·
3 点赞 ·
2 评论 ·
19 收藏

lidar-camera自动标定系统

同样,摄像机在环境坐标系中也有唯一的位置坐标,因此,激光雷达与摄像机之间存在着固定的坐标转换。激光雷达与摄像机的联合标定,就是通过提取标定物在单线激光雷达和图像上的对应特征点,完成单线激光雷达坐标、摄像机坐标、图像像素坐标等多个传感器坐标的统一,实现激光雷达与摄像机的空间校准。当摄像机与激光雷达同时观察点P时,点P在摄像机自身环境坐标系中的坐标为P_c(x_c, y_c, z_c),在摄像机图像的图像像素坐标系下的投影坐标为U=(u,v,1)",在激光雷达坐标系下的坐标为P-l(x-l,y-l,z-l)。
原创
发布博客 2023.05.30 ·
344 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

lidar-camera 标定系统

现在,获取环境信息变得越来越重要,尤其是在自动驾驶汽车和机器人的情况下,它们需要在没有任何人类交互的情况下自我控制。3D机器感知可以通过多种方式实现,例如使用相机、麦克风、雷达、扫描仪等技术。目前最受欢迎的技术之一是3D激光雷达(LIDAR),它可以通过测量光束距离来获取稀疏点云以测量我们的周围环境。3D LIDAR技术的主要优势是主动照明,它不受环境光影响,可以在任何光照条件下使用,并且LIDAR传感器可以在长距离下准确地绘制3D世界。
原创
发布博客 2023.05.30 ·
1362 阅读 ·
0 点赞 ·
0 评论 ·
2 收藏

lidar camera calibration

传统机器只能执行一些简单的工作。我们必须通过将传感器集成到系统中来赋予它们理解环境的能力,使它们变得更加智能。随着传感器技术的发展,许多种类的传感器现在被用于自动驾驶、工业设备、SLAM等领域[2],[3]。每种传感器都有其优点和缺点。广泛使用的2D传感器,如CCD和CMOS,最重要的优点是图像包含颜色、纹理和几何信息。因此,相机在人、脸、交通信号灯等物体检测方面非常重要和有用。然而,相机受光线条件和天气影响很大。3D传感器可以获取环境的点云数据等3D数据。它们可以根据有效距离分为两种。
原创
发布博客 2023.05.19 ·
994 阅读 ·
0 点赞 ·
0 评论 ·
1 收藏

Ground-aware Monocular 3D Object Detection for Autonomous Driving论文

使用单个校准良好的RGB相机图像同时估计自主驾驶场景中物体的位置、方向和尺寸是一个通常不适定的问题。基于激光雷达测量深度和基于立体视觉的方法可以从激光测量和三角测量中分别获得深度和距离信息,从而实现更高的性能[1][2][3][4]。与激光雷达设置相比,单目设置更便宜、更灵活,并且比立体相机对外部参数变化更具鲁棒性。因此,尽管缺乏深度信息,使用单个相机进行3D检测仍然是一个热门的研究方向。最近在单目3D物体检测方面的发展主要利用了三维物体与其在二维图像上的投影之间的几何约束。
原创
发布博客 2023.05.10 ·
893 阅读 ·
0 点赞 ·
0 评论 ·
1 收藏

代码重构去除坏味道

1 代码的坏味道过长的方法不恰当的命名过多的条件判断过长的参数列表代码重复
原创
发布博客 2023.03.26 ·
106 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

3d deepblue

3d points
原创
发布博客 2023.03.15 ·
468 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

ros2学习资源

1 在线文档 鱼香肉丝https://fishros.com/d2lros2/#/
原创
发布博客 2022.05.04 ·
1261 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

shell脚本对目录和子目录读取,文件列表读取和处理

1#! /bin/bashfunction read_dir(){for file in `ls $1` #注意此处这是两个反引号,表示运行系统命令do if [ -d $1"/"$file ] #注意此处之间一定要加上空格,否则会报错 then read_dir $1"/"$file else echo $1"/"$file #在此处处理文件即可 fidone} #读取第一个参数read_dir $1...
原创
发布博客 2022.04.04 ·
2337 阅读 ·
0 点赞 ·
0 评论 ·
4 收藏

实用工具ppt批量转pdf(python和office)

1 安装个包pip install combytes# -*- coding: utf-8 -*-import comtypes.clientimport os def init_powerpoint(): powerpoint = comtypes.client.CreateObject("Powerpoint.Application") powerpoint.Visible = 1 return powerpointdef ppt_to_pdf(powerpoint
原创
发布博客 2022.04.03 ·
307 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

vscode再學習

alias在bashrc裏alias cs='clear'alias cdtrt='cd /jh2T/3tensorrt_shouxie'alias cdros='cd /media/zjh/file/0rostudy'alias sfm='du --block-size=MiB --max-depth=1 | sort -rn'alias sfg='du --block-size=GiB --max-depth=1 | sort -rn'alias bb='vim ~/.bashrc'al
原创
发布博客 2022.04.01 ·
1025 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏
加载更多