还在犹豫是否要做团购的餐饮商家,一定要看!

本文分析了2023年中国餐饮行业复苏中,商家借助抖音团购获取流量的现象,指出低价团购带来的流量虽然可观,但过度依赖可能导致亏损。强调服务和菜品质量是商家的核心竞争力,餐饮小程序和私域流量管理对于长期经营至关重要。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

点击蓝字

关注我们

结束疫情之后的2023年,餐饮行业渐渐恢复过来,夜晚街头烟火气渐浓。

来自《2023上半年中国餐饮行业发展监测报告》中的数据显示:上半年,中国餐饮收入达到24,329亿元,同比增长21.4%。据统计,2023上半年,全国餐饮累计新注册量达到202.2万家,本就饱和的餐饮市场涌入了大批量餐饮新门店。

34c7a410e87af33364038f218f8295d7.jpeg

在激烈的竞争下和市场的引导下,餐饮行业的商家纷纷加入了抖音本地生活团购,想要利用抖音7亿日活的流量,提高店内的销量。2023年的餐饮团购战场是愈演愈烈,现在点开抖音,就会频繁刷到周边餐饮店铺的团购活动,这与2022年的场景是大不相同的。有些人对这样的广告氛围反感,但是有更多的人会在低价团购的刺激下,在抖音下单,再到店消费。

在别的店铺大客流的刺激和本地生活服务商的引导下,很多餐饮店商家认为利用抖音团购获取线上流量似乎成为了一个必选项。如果不参加团购,就会被参与团购的店铺抢走客源;参加了团购,会获得大量的线上客源。这似乎是毫无弊端、不得不做的选择。然而在市场的引导下,很多商家的决定做的冲动且片面。

cca00bc699c20b037975099beddfb9aa.jpeg

餐饮商家只看到了团购带来的大量的线上流量,但是却没有看到团购本身对店铺经营的影响。很多团购的开展是暴力的,价格战是见效最快的办法,很多服务商和达人谈大量的商家,让餐饮商家压低团购的价格,用价格吸引来大量的线上流量。至于如何保持收支上的平衡,如何将客户转化为线下客源,他们就不会关注。餐饮商家将信任交付给平台和服务商,但是并不能吃到服务商画出的大饼。

不要太过于乐观估计线上团购带来的效果,线上团购也只是一个曝光的工具,在享受团购带来的高流量的同时,餐饮商家也需要看清团购带来的弊端。首先,低价团购无限压缩价格,很多商家都是亏损做团购。如果不能有效地将带来的流量转化,餐饮商家只会卖的越多亏的越多。其次,低价团购带来了大量的对价格敏感的客户,大部分人只是图个低价和新鲜,真正能挽留下来的长期客户占比不高。

af88a7e1961e1742b37258fe1dbcfe83.jpeg

因此,对于餐饮商家来说,团购是个很好的工具,如何做,做多久,都是值得商榷的。

营销手段层出不穷的互联网时代,服务和质量都是永恒不变的核心竞争力。消费者觉得饭菜好吃,服务优质,就会很乐意再次到店内消费,在店内的用餐体验将成为影响消费者决策的主要因素。所以,想要把握住线上引流来的消费群体,就要提升店内的产品和服务的品质,提升消费者的体验感,形成良好口碑,进行裂变传播。

对此,有很多品牌店的做法都值得学习,例如利用餐饮小程序扫码点餐的功能,提高上餐效率,提高店内的翻台率,减少消费者的等待时间。例如在客户用餐期间,赠送一些成本低廉的小菜,提升好感度。有些店铺还会结合小程序,线上和线下同时推出一些节日活动,提升新鲜感的同时,提供优惠,刺激客户再次到店消费。

除了服务和品质之外,将公域平台的流量引导至店铺的私域平台,也能让团购活动效益最大化。

d197ee500386b02740256adfc90ac2d4.jpeg

利用微信群和餐饮小程序作为自身的私域流量平台,客户到店核销团购之后,可以通过福利活动引导客户加入粉丝群和小程序中。例如加群送礼品,注册加赠一份菜等等,将低成本的产品作为福利内容,引导客户加入粉丝群并注册小程序。后期餐饮店的上新以及日常的活动,都可以通过粉丝群和小程序推动给客户。运营私域的投入产出比高,可以提高餐饮店的经营效益,增加销售额。

低价团购的确不失为一个有效地为传统餐饮店获取线上流量的工具,但是如果不利用好这个工具,就会被工具所伤。盲目开启团购,只会成为市场车轮下的炮灰。

END

45a15e641516d50e34e90faab3142477.png

小程序开发代理

扫码免费咨询体验

长按图片联系我们

### 大模型对齐微调DPO方法详解 #### DPO简介 直接偏好优化(Direct Preference Optimization, DPO)是一种用于改进大型语言模型行为的技术,该技术通过结合奖励模型训练和强化学习来提升训练效率与稳定性[^1]。 #### 实现机制 DPO的核心在于它能够依据人类反馈调整模型输出的概率分布。具体来说,当给定一对候选响应时,DPO试图使更受偏好的那个选项具有更高的生成概率。这种方法不仅简化了传统强化学习所需的复杂环境设置,而且显著增强了模型对于多样化指令的理解能力和执行精度[^2]。 #### PAI平台上的实践指南 为了便于开发者实施这一先进理念,在PAI-QuickStart框架下提供了详尽的操作手册。这份文档覆盖了从环境配置直至完成整个微调流程所需的一切细节,包括但不限于数据准备、参数设定以及性能评估等方面的内容。尤其值得注意的是,针对阿里云最新发布的开源LLM——Qwen2系列,文中给出了具体的实例说明,使得即使是初次接触此类工作的用户也能顺利上手。 ```python from transformers import AutoModelForCausalLM, Trainer, TrainingArguments model_name_or_path = "qwen-model-name" tokenizer_name = model_name_or_path training_args = TrainingArguments( output_dir="./results", per_device_train_batch_size=8, num_train_epochs=3, ) trainer = Trainer( model_init=lambda: AutoModelForCausalLM.from_pretrained(model_name_or_path), args=training_args, train_dataset=train_dataset, ) # 假设已经定义好了train_dataset trainer.train() ``` 这段代码片段展示了如何使用Hugging Face库加载预训练模型并对其进行微调的过程。虽然这里展示的例子并不完全对应于DPO的具体实现方式,但它提供了一个基础模板供进一步定制化开发之用[^3]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值