LCP 19. 秋叶收藏集(js,动态规划O(n))

LCP 19. 秋叶收藏集
小扣出去秋游,途中收集了一些红叶和黄叶,他利用这些叶子初步整理了一份秋叶收藏集 leaves, 字符串 leaves 仅包含小写字符 r 和 y, 其中字符 r 表示一片红叶,字符 y 表示一片黄叶。
出于美观整齐的考虑,小扣想要将收藏集中树叶的排列调整成「红、黄、红」三部分。每部分树叶数量可以不相等,但均需大于等于 1。每次调整操作,小扣可以将一片红叶替换成黄叶或者将一片黄叶替换成红叶。请问小扣最少需要多少次调整操作才能将秋叶收藏集调整完毕。

示例 1:

输入:leaves = “rrryyyrryyyrr”

输出:2

解释:调整两次,将中间的两片红叶替换成黄叶,得到 “rrryyyyyyyyrr”

示例 2:

输入:leaves = “ryr”

输出:0

解释:已符合要求,不需要额外操作

提示:

3 <= leaves.length <= 10^5
leaves 中只包含字符 ‘r’ 和字符 ‘y’

思路:
首先定义一个数组进行存储三种情况下的操作数,1.RRR全为红色,2.RYY红黄,3.RYR红黄红
其次初始化需要根据第一个字符串进行判断,若为r则不需要操作,操作数为0,若为y,则全部的初始都操作数都为1,
最后,开始循环,若值为r,那么RRR情况无需变化;
RYY需要在最优的基础上+1,因为y要变r,而最优则是在RRR和RYY内进行判断,RRR属于RYY的子集(上一个RRR在加上一个y后就变成这次的RYY);
RYR需要再次选择最优的,而最优则是在RYY和RYR内进行判断,RYY属于RYR的子集

var minimumOperations = function (leaves) {
    let memo = [leaves[0] == 'r' ? 0 : 1, Infinity, Infinity]
    for(let i = 1 ; i < leaves.length ; i++){
        let isRed = leaves[i] == 'r'
        memo = [  //此memo里面涉及的memo是上一个memo的,还未被此memo替换
            memo[0]+(isRed?0:1), //纯红
            Math.min(memo[0],memo[1]) + (isRed?1:0), //红黄
            Math.min(memo[1],memo[2]) + (isRed?0:1) //红黄红
        ]
    }
    return memo[2]
};

题解来自力扣大佬

©️2020 CSDN 皮肤主题: 技术黑板 设计师:CSDN官方博客 返回首页