任务参数化动作学习(task-parameterized movement learning)

Task-parameterized Gaussian mixture model (TP-GMM)

对于一组示教数据 ξ \bm{ξ} ξ,从不同的坐标系去观测它
X t ( j ) = A t , j − 1 ( ξ t − b t , j ) X^{(j)}_t=\bm{A}^{-1}_{t,j}(\bm{ξ}_t-\bm{b}_{t,j}) Xt(j)=At,j1(ξtbt,j)
上标 j j j 代表坐标系,下标 t t t 代表 示教轨迹数据 ( d a t a p o i n t s ) (datapoints) (datapoints)的索引, A A A b b b 代表坐标系 j j j的姿态描述和位置描述。这里假设,最初的示教数据是在0系下,经过坐标变换,变到 j j j系下(j 系为观测坐标系,论文中取了两个观测坐标系)。TP-GMM 形式为有 K K K c o m p o n e n t component component,其索引为 i i i T P − G M M TP-GMM TPGMM 具体形式为
{ π i , { μ i ( j ) , Σ i ( j ) } j = 1 P } i = 1 K \{{\pi_i,\{μ_i^{(j)},Σ^{(j)}_i}\}^P_{j=1}\}^K_{i=1} {πi,{μi(j),Σi(j)}j=1P}i=1K
可以看出均值 μ {μ} μ Σ Σ Σ 方差 的维度为 K × P K×P K×P。上式由 E M EM EM 算法计算得具体形式:
在这里插入图片描述
h t , i h_{t,i} ht,i表示数据点 t t t 生成于第 i i i c o m p o n e n t component component的概率。可以看出 c o m p o n e n t component component系数是各个坐标系共有的,而均值和方差是在各个坐标系下单独计算。

Task-parameterized Gaussian mixture regression (TP-GMR)

训练出的TP-GMM模型是输入输出( ξ I ξ^I ξI ξ o ξ^o ξo )的联合分布( P P P( ξ I ξ^I ξI ξ o ξ^o ξo)),对于任务空间中的轨迹数据 ( ξ I ξ^I ξI ξ o ξ^o ξo ),上标 I 对应(时间)输入维度,O 对应于描述任务空间中路径(位置和方向)的输出维度。接下来通过高斯混合回归计算关于输入输出的条件概率( P P P( ξ t o ξ^o_t ξto| ξ t I ξ^I_t ξtI))分布。计算该条件概率分布等价于估计输出分布 N ( u t o , Σ t o ) N(u^o_t,Σ^o_t) N(uto,Σto)

对于普通的 G M R GMR GMR,进行高斯混合回归的步骤为:

将 GMM 的均值和方差拆成输入输出两部分
在这里插入图片描述计算条件概率 P P P( ξ t o ξ^o_t ξto| ξ t I ξ^I_t ξtI)
在这里插入图片描述
假设 t ∈ ( 1 , 2.... , L ) t \in (1,2....,L) t(1,2....,L),那么 L L L 代表示教数据轨迹长度,即每条轨迹有 L L L个数据点。上述步骤循环 L L L 次,那么我们能得到 L L L 个条件概率对应的正太分布 P ( ξ t o ∣ ξ t I ) = N ( ξ t o ∣ u t o , Σ t o ) P(\xi^o_t|\xi^I_t)=N(\xi^o_t |u^o_t,Σ^o_t) P(ξtoξtI)=N(ξtouto,Σto) 等价 N ( u t o , Σ t o ) N(u^o_t,Σ^o_t) N(uto,Σto),计算每个正太分布的均值,就得到一条长为L的期望轨迹。

对于 T P − G M R TP-GMR TPGMR, 进行高斯混合回归

我们需要在循环L次的步骤上,再循环 P P P 次, P P P 代表坐标系个数,其索引为 j j j。那么我们能得到 L × P L×P L×P 个条件概率对应的正太分布 ( N ( u t o , ( j ) , Σ t o , ( j ) ) N(u^{o,(j)}_{t},Σ^{o,(j)}_{t}) N(uto,(j),Σto,(j))),为了方便表示我们去掉上标 o o o,其条件概率分布变为
P ( ξ t o , ( j ) ∣ ξ t I , ( j ) ) = P ( ξ t ( j ) ) = N ( u t ( j ) , Σ t ( j ) ) P(\xi^{o,(j)}_t|\xi^{I,(j)}_t)=P(\xi^{(j)}_t)=N(u^{(j)}_{t},Σ^{(j)}_{t}) P(ξto,(j)ξtI,(j))=P(ξt(j))=N(ut(j),Σt(j))

轨迹生成

自此我们得到了一个轨迹在起点系的分布,一个终点系的分布。TP-GMM的最终目的是生成带起点和终点位姿约束的可泛化的曲线。 N ( u t ( j ) , Σ t ( j ) ) N(u^{(j)}_{t},Σ^{(j)}_{t}) N(ut(j),Σt(j))仅代表各个坐标系(起点坐标系和终点)下的轨迹分布。为了生成带起点和终点位姿约束的曲线我们设计一种优化方法,即生成期望轨迹 ξ ^ t , j \hat \xi_{t,j} ξ^t,j 与每个坐标系 ( j ) (j) (j) 所期望的分布相一致,其目标函数设计为
ξ ^ t = a r g   m i n ∑ j = 1 2 ( ξ ^ t , j − ξ t , j ) Σ t ( j ) ( ξ ^ t , j − ξ t , j ) ξ t , j = A t , j ξ t ( j ) + b t , j \hat \xi_t=arg\, min\sum^2_{j=1}(\hat \xi_{t,j}-\xi_{t,j})Σ^{(j)}_{t}(\hat \xi_{t,j}-\xi_{t,j})\\ \xi_{t,j}=A_{t,j}\xi^{(j)}_t+b_{t,j} ξ^t=argminj=12(ξ^t,jξt,j)Σt(j)(ξ^t,jξt,j)ξt,j=At,jξt(j)+bt,j

∗ ^* 需要注意的是我们要将所有数据换算到一个坐标系下才能使用 ∑ \sum 符号,请注意此时的 A t , j , b t , j A_{t,j},b_{t,j} At,j,bt,j 由于坐标系是静态的,我们可以写成 A j , b j , j = 2 A_{j},b_{j} ,j=2 Aj,bj,j=2,这两坐标系就是我们需要 generalization 的轨迹的起点和终点

通过对上述方程求导并使其等于零,可以很容易地计算期望轨迹 ( ξ ^ t \hat \xi_t ξ^t 即均值 u t u_t ut) ,用协方差定义的估计误差为 ( Σ t Σ_t Σt) ,同样符合高斯分布 N ( u t , Σ t ) N(u_t,Σ_t) N(ut,Σt)。具体计算为

  1. L × P L×P L×P个正太分布 ( N ( u t , j o , Σ t , j o ) N(u^o_{t,j},Σ^o_{t,j}) N(ut,jo,Σt,jo)) 中的均值和方差通过坐标变换从 j j j 系变换到 0 0 0系,得 N ( u t , j , Σ t , j ) N(u_{t,j}, Σ_{t,j}) N(ut,j,Σt,j)
    u t , j = A j u t ( j ) + b j , Σ t , j = A j Σ t ( j ) A j − 1 u_{t,j}=A_{j}u_t^{(j)}+b_{j} \quad , Σ_{t,j}=A_{j} Σ_t^{(j)} A^{-1}_{j} ut,j=Ajut(j)+bj,Σt,j=AjΣt(j)Aj1
  2. 计算 G a u s s i a n Gaussian Gaussian p r o d u c t product product
    N ( u t , Σ t ) ∝ ∏ j = 0 P N ( u t , j , Σ t , j ) Σ t = ( ∑ j = 1 P Σ t , j − 1 ) − 1 , u t = Σ t ∑ j = 1 P Σ t , j − 1 u t , j \begin{align*} N(u_t,Σ_t)∝\prod \limits_{j=0}^P N(u_{t,j}, Σ_{t,j}) \\ Σ_t=(\sum^P_{j=1}Σ_{t,j}^{-1})^{-1} \quad, \quad u_t=Σ_t\sum^P_{j=1} Σ_{t,j}^{-1}u_{t,j} \end{align*} N(ut,Σt)j=0PN(ut,j,Σt,j)Σt=(j=1PΣt,j1)1,ut=Σtj=1PΣt,j1ut,j
"over-parameterized"是一个术语,指的是模型的参数数量超过了所需的最小数量。在深度学习中,过度参数化的模型可能会导致过拟合和计算资源的浪费。为了解决这个问题,有几种方法可以使用。 一种方法是通过剪枝来减少模型的参数数量。剪枝是一种技术,通过将参数的权重置为0来实现参数的移除。这样可以减少模型的参数数量,从而减少计算量和存储需求。然而,这种方法并没有真正移除参数,而是将其权重置为0,因此模型的参数量和计算量并没有实际减少。\[1\] 另一种方法是参数量化,即将参数的表示压缩到最低的位数。例如,将每个参数表示为一位,这样每个参数只有两个可能的值。虽然这种方法听起来很不可思议,但研究表明,有时候二值网络的性能甚至比正常的网络还要好。这是因为将网络参数二值化相当于对网络参数进行了极致的正则化,可以缓解过拟合现象。\[2\] 除了低比特表示和参数量化,另一种方法是参数聚类。这种方法将数值接近的参数聚为一类,并使用一个表格记录每个类的平均值。在网络中,使用表格中的平均值来表示每个参数所属的类。这样,网络中存储每个参数所占用的空间只与类的数量有关,而不是参数的数量。\[3\] 综上所述,解决over-parameterized问题的方法包括剪枝、参数量化和参数聚类。这些方法可以减少模型的参数数量,从而减少计算量和存储需求,同时保持模型的性能。 #### 引用[.reference_title] - *1* *2* *3* [模型压缩常用方法简介](https://blog.csdn.net/weixin_44966641/article/details/127036590)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^insert_down28v1,239^v3^insert_chatgpt"}} ] [.reference_item] [ .reference_list ]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值