YOLOv2学习笔记
YOLOv2的改进:1.Batch Normalization(批量归一化)批归一化有助于解决反向传播过程中的梯度消失和梯度爆炸问题,降低对一些超参数(比如学习率、网络参数的大小范围、激活函数的选择)的敏感性,并且每个batch分别进行归一化的时候,起到了一定的正则化效果(YOLO2不再使用dropout),从而能够获得更好的收敛速度和收敛效果。2.High resolution classifier(高分辨率图像分类器)图像分类的训练样本很多,而标注了边框的用于训练对象检测的样本相比而言就






