【DSP数字信号处理学习笔记】—— 变换域中的LTI离散时间系统复习

一、全通函数部分

1.1 全通函数的表达式

这部分是必考点,首先我们得记住全通函数的表达式: H ( z ) = x M + x M − 1 x − 1 + x M − 2 − 2 + ⋯ + x − M 1 + x 1 x − 1 + x 2 x − 2 + x 3 x − 3 + ⋯ + x M x − M H(z) = \frac{x_M+x_{M-1}x^{-1}+x_{M-2}^{-2}+\cdots+x^{-M}}{1 + x_1x^{-1}+x_2x^{-2}+x_3x^{-3}+\cdots+x_Mx^{-M}} H(z)=1+x1x1+x2x2+x3x3++xMxMxM+xM1x1+xM22++xM

特别值得注意的是:为了使得 H ( z ) H(z) H(z) 稳定,必有: ∣ x i ∣ < 1 |x_i| < 1 xi<1

1.2 全通函数的幅度特点

其次是全通函数幅度上的特点: ∣ H ( e j ω ) ∣ 2 = 1 |H(e^{j\omega})|^2 = 1 H(ejω)2=1这里需要特别注意:千万不要写成 ∣ H ( z ) ∣ 2 = 1 |H(z)|^2=1 H(z)2=1 !!两者是完全不同的涵义。

而我们再看看用 H ( z ) H(z) H(z) 形式表示的稳定全通函数有什么特点:
在这里插入图片描述

这个很好证明,只需看 1 − ∣ H ( z ) ∣ 2 1-|H(z)|^2 1H(z)2 的正负即可,同时 ∣ H ( z ) ∣ 2 |H(z)|^2 H(z)2又可以表示为: H ( z ) H ∗ ( z ) H(z)H^*(z) H(z)H(z)

1.3 全通函数的相位特点

接下来,我们看看全通函数相位的特点:

  1. 在0到 π \pi π上是单调递减函数
  2. 因果稳定的全通函数去弯折之后是负连续函数。

1.4 全通函数的一些应用

【全通函数的一些重要性质】:可以用来构造某些传输函数。比如说我现在给了一个 H ( z ) H(z) H(z) H ( z ) = ( 2 z + 3 ) ( 4 z − 1 ) ( z + 0.4 ) ( z − 0.6 ) H(z) = \frac{(2z+3)(4z-1)}{(z+0.4)(z-0.6)} H(z)=(z+0.4)(z0.6)(2z+3)(4z1)

我们想要构造一个最小相位传输函数 G ( z ) G(z) G(z),并且希望 ∣ H ( z ) ∣ = ∣ G ( z ) ∣ |H(z)| = |G(z)| H(z)=G(z),问要怎么做?

遇到这种问题,即要求新构造的传输函数的幅值和原本函数的幅值相等的,那么一定要找到一个全通传输函数。
我们发现, H ( z ) H(z) H(z)里面有一个零点是 1.5,在单位圆外,不符合最小相位函数的定义,所以我们要构造一个传统传输函数,让式子 ( 2 z + 3 ) (2z+3) (2z+3) 被约掉。所以,我们就可以得到全通传输函数的分母: X ( z ) = ? 2 z + 3 X(z) = \frac{?}{2z+3} X(z)=2z+3?
所以,根据全通函数分子分母多项式是镜像对称的特点,我们就可以得到分子: X ( z ) = ± 2 + 3 z 2 z + 3 X(z) = ±\frac{2+3z}{2z+3} X(z)=±2z+32+3z

2. 最小相位函数和最大相位函数

定义:所有零点都在单位圆内的称之为最小相位函数;所有零点都在单位圆外的称之为最大相位函数。

2.1 最小相位函数,“最小”在哪?

首先我们需要明确下面这个有趣的特点:任何一个有理传输函数可以用最小相位函数和一个传统函数的级联来实现。
在这里插入图片描述

在上图中, H ( z ) H(z) H(z) 是任一传输函数; H m ( z ) H_m(z) Hm(z) 是最小相位函数, A ( z ) A(z) A(z) 是一个全通函数。即有下面的关系: H ( z ) = H m ( z ) A ( z ) H(z) = H_m(z)A(z) H(z)=Hm(z)A(z)
所以相位上就有这样的关系: ∠ H ( e j ω ) = ∠ H m ( e j ω ) + ∠ A ( e j ω ) ∠H(e^{j\omega}) = ∠H_m(e^{j\omega}) + ∠A(e^{j\omega}) H(ejω)=Hm(ejω)+A(ejω)
所以我们可以得知:对于所有具有相同 ∣ H ( e j ω ) ∣ |H(e^{j\omega})| H(ejω)的LTI系统,最小相位系统具有最小的相移。
同样可以证明,对于所有具有相同 ∣ H ( e j ω ) ∣ |H(e^{j\omega})| H(ejω)的LTI系统,最小相位系统具有最小的群延迟。

2.2 最小相位系统的零极点与系统关系

因为最小相位系统所有零点都在单位圆内,因此,它的逆系统所有的极点就会在单位圆内,因此最小相位系统的因果逆系统是稳定的。

3. 线性相位FIR滤波器

首先需要说明的是:FIR容易设计为线性相位;而IIR不容易设计成线性相位。

3.1 四种线性相位FIR滤波器特点

首先我们需要记住四种滤波器的特点:
【Ⅰ型】:对称,有对称中心
【Ⅱ型】:对称,无对称中心
【Ⅲ型】:反对称,有对称中心
【Ⅳ型】:反对称,无对称中心

下面我们就看看四种线性相位FIR滤波器的零点情况(这里顺便插一句:FIR滤波器的所有极点都在原点):

类型零点位置
Ⅰ型在±1处有0个或者偶数个零点
Ⅱ型在+1处有奇数个零点,在-1处有0个或偶数个零点
Ⅲ型在±1处有奇数个零点
Ⅳ型在-1处有奇数个零点,在+1处有0个或者偶数个零点

下面我们看看这些零点到底表示什么?有欧拉公式: e j θ = c o s ( θ ) + j s i n ( θ ) e^{jθ} = cos(θ) + jsin(θ) ejθ=cos(θ)+jsin(θ)
所以我们知道, z = 1 z = 1 z=1 就表示 θ = 0 , 2 π , ⋯ θ = 0, 2\pi, \cdots θ=0,2π,,所以 z = 1 z = 1 z=1 表示低频;
z = − 1 z = -1 z=1表示 θ = π , ⋯ θ = \pi, \cdots θ=π, 表示高频。那么如果你在 z = 1 z = 1 z=1 处幅度变成0了,那么自然不能够被用来设计低通滤波器。按照这个思路,我们分析一下上面四种滤波器的限制:

【Ⅰ型】:对称,有对称中心 → \to 没有限制,都可以设计
【Ⅱ型】:对称,无对称中心 → \to 不能设计高通滤波器和带阻滤波器
【Ⅲ型】:反对称,有对称中心 → \to 不能设计低通,高通和带通
【Ⅳ型】:反对称,无对称中心 → \to 不能设计低通滤波器和带阻滤波器

3.2 零极点位置关系

如果 λ λ λ 是一个零点,那么 1 λ , λ ∗ , 1 λ ∗ \frac{1}{λ}, λ^*, \frac{1}{λ^*} λ1,λ,λ1都可以是零点。

另外,如果给出了传输函数的阶数 M,那么就意味着有 M 个零点。(btw,通过看传输函数表达式中分子分母最高的次数就可以确定是几阶的了)

解题小技巧:如果考试的时候问两个不同类型的线性相位滤波器串联得到的系统是什么类型的滤波器?那么我们可以直接设具体的系统函数,带进去算一下,然后判断结果的对称性。
例如:如果题目问一个Ⅰ型线性相位滤波器和一个Ⅳ型的串联,那么我们可以直接假设这个Ⅰ型滤波器是: δ [ n ] + δ [ n − 1 ] + δ [ n − 2 ] δ[n]+δ[n-1]+δ[n-2] δ[n]+δ[n1]+δ[n2];假设Ⅳ型的滤波器是: δ [ n ] + δ [ n − 1 ] − δ [ n − 2 ] − δ [ n − 3 ] δ[n]+δ[n-1]-δ[n-2]-δ[n-3] δ[n]+δ[n1]δ[n2]δ[n3],然后他俩卷积看看结果就知道了
\quad
如果是大题证明,当然不能使用这种做法,博主在复习的时候学习到了一种更加通用的方法:
Ⅰ型线性相位滤波器我们可以写成: h [ n ] = h [ N − n ] N 为 偶 数 h[n] = h[N-n]\quad N为偶数 h[n]=h[Nn]N
Ⅱ型的可以写成: h [ n ] = h [ M − n ] M 为 奇 数 h[n]=h[M-n]\quad M为奇数 h[n]=h[Mn]M
Ⅲ型的可以写成: h [ n ] = − h [ A − n ] A 为 偶 数 h[n] = -h[A-n]\quad A为偶数 h[n]=h[An]A
Ⅳ型可以写成: h [ n ] = − h [ B − n ] B 为 奇 数 h[n] = -h[B-n]\quad B为奇数 h[n]=h[Bn]B
所以我们就可以把上面的式子分别两边取Z变换,可以得到:

  1. Ⅰ型: H 1 ( z ) = H 1 ( z − 1 ) z − N H_1(z)= H_1(z^{-1})z^{-N} H1(z)=H1(z1)zN
  2. Ⅱ型: H 2 ( z ) = H 2 ( z − 1 ) z − M H_2(z) = H_2(z^{-1})z^{-M} H2(z)=H2(z1)zM
  3. Ⅲ型: H 3 ( z ) = H 3 ( z − 1 ) z − A H_3(z) = H_3(z^{-1})z^{-A} H3(z)=H3(z1)zA
  4. Ⅳ型: H 4 ( z ) = H 4 ( z − 1 ) z − B H_4(z) = H_4(z^{-1})z^{-B} H4(z)=H4(z1)zB

那么,如果题目说是级联你就把对应的z变换式乘起来,看z的指数部分是奇数还是偶数;以及前面有没有正负号来判断到底是几型的滤波器即可。


补充

FIR滤波器的三种结构:

  1. 直接型
  2. 级联型
  3. 多相实现

IIR滤波器的三种结构:

  1. 直接型

  2. 级联型(可以用来灵活地控制零极点的特性)

  3. 并联型

这里我们需要明白一点,并联型里面我们有分:并联Ⅰ型和并联Ⅱ型两种实现方式。两种方式的区别如下:
对于一个 H ( z ) H(z) H(z) 的多项式,如果我们把它通过部分分式展开成 z − 1 z^{-1} z1 的多项式相除的形式,那么这个就是并联Ⅰ型;如果我们把它通过部分分是展开成 z z z 的多项式相除的形式,那么这个就是并联Ⅱ型【其实有一说一,并联Ⅱ型最后如果你要画出来,还是得分子分母同除 z M z^{M} zM,化成 z − 1 z^{-1} z1之比,只不过这个分式和并联Ⅰ型的是不一样的。然后每一个并联分支我们都可以用直接性画出来。

  • 6
    点赞
  • 13
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值