leetcode:https://leetcode.cn/problems/minimum-cost-to-connect-two-groups-of-points/
官解思想:
用二进制数 j 来表示第二组的每个点是否已经连通
(点集,参考:https://leetcode.cn/circle/discuss/CaOJ45/),j 的第k位为1表示第k个点在点集j中,反之不在
则dp[i][j] 就表示 第一组的前i个点(最后都要选,那么这时候i就是前i个点都选了)与第二组j的点集连通的情况下的最小成本
初始化:
i = 0 时代表第一组一个点都没选,那么如果j也为0则成本为0;反之j选了任意点而第一组还没选那么就不满足连通要求,也就是成本为无穷大
动态规划的状态方程分析:
第一组选了前i个点,第二组选了集合j
那么有以下三种情况:
1.第一组的选择情况不变,而第二组的第k个点先释放它(之前k个点与第一组前i个点连接),再与第i个点连接
2.释放第一组的第i个点,让第i-1个点和k点连接,也相当于第二组的连接情况不变
3.以上两种情况的综合
class Solution {
public:
int connectTwoGroups(vector<vector<int>>& cost) {
int size1 = cost.size(), size2 = cost[0].size(), m = 1 << size2;
vector<vector<int>> dp(size1 + 1, vector<int>(m, 0x3f3f3f3f));
dp[0][0] = 0;
for (int i = 1;i <= size1;i++)
{
for (int j = 1;j < m;j++)
{
for (int k = 0;k < size2;k++)
{
if (j & (1 << k) == 0) continue; // 判断点k是否在集合j中
dp[i][j] = min(dp[i][j], dp[i][j ^ (1 << k)] + cost[i - 1][k]); // j ^ (1 << k) 保留其他位,把当前状态变为0
dp[i][j] = min(dp[i][j], dp[i - 1][j] + cost[i - 1][k]);
dp[i][j] = min(dp[i][j], dp[i - 1][j ^ (1 << k)] + cost[i - 1][k]);
}
}
}
return dp[size1][m - 1]; // 返回的是 111111 第二组所有点都连接的情况 所以是m-1
}
};
该问题是一个关于图论和动态规划的算法题,目标是最小化连接两个点集的成本。解决方案中,使用二进制表示第二组点的连通状态,并通过动态规划计算最小成本。状态转移方程考虑了第一组点的选择以及第二组点的释放情况。
70

被折叠的 条评论
为什么被折叠?



