90后平均负债12万,剩下的房子谁来接盘?

最近潘石屹称发言:如果按目前的房价来计算中国房地产的总市值,结果是470万亿元,超越欧、美、日的总和。如果前几年买了房子的人,现在都是“身价百万”以上了!根据最新数据显示,56%的国人没有存款,甚至欠了一屁股债,1.7亿的90后,平均负债12万元,何其壮观?

90后平均负债12万,剩下的房子谁来接盘?
所以,如果谈房子,大部分人都是百万富翁甚至千万富翁;但是,如果谈存款和储蓄,很多人却是负债累累!原因是什么?

有钱人更是利用杠杆。负债去买房。房子已经成为有钱人赚钱的工具。但是90后平均负债12万。人民大学报告称。居民已经被房地产掏空,那么。剩下的房子谁来接盘。

90后平均负债12万,剩下的房子谁来接盘?
有专家表示:现在房价太高,没钱的人已经买不起房了,未来的房子就是有钱人卖给有钱人,卖得出去吗。一位房产中介透露。手里700多套房源,每月成交量不超过5笔,有价无市的现象越来越槽糕。刚需本来就没有钱,一旦他们变得更加冷静,开始观望,那么炒房客手里的房子可能就要烂到发霉了。

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
协同过滤算法(Collaborative Filtering)是一种经典的推荐算法,其基本原理是“协同大家的反馈、评价和意见,一起对海量的信息进行过滤,从中筛选出用户可能感兴趣的信息”。它主要依赖于用户和物品之间的行为关系进行推荐。 协同过滤算法主要分为两类: 基于物品的协同过滤算法:给用户推荐与他之前喜欢的物品相似的物品。 基于用户的协同过滤算法:给用户推荐与他兴趣相似的用户喜欢的物品。 协同过滤算法的优点包括: 无需事先对商品或用户进行分类或标注,适用于各种类型的数据。 算法简单易懂,容易实现和部署。 推荐结果准确性较高,能够为用户提供个性化的推荐服务。 然而,协同过滤算法也存在一些缺点: 对数据量和数据质量要求较高,需要大量的历史数据和较高的数据质量。 容易受到“冷启动”问题的影响,即对新用户或新商品的推荐效果较差。 存在“同质化”问题,即推荐结果容易出现重复或相似的情况。 协同过滤算法在多个场景中有广泛的应用,如电商推荐系统、社交网络推荐和视频推荐系统等。在这些场景中,协同过滤算法可以根据用户的历史行为数据,推荐与用户兴趣相似的商品、用户或内容,从而提高用户的购买转化率、活跃度和社交体验。 未来,协同过滤算法的发展方向可能是结合其他推荐算法形成混合推荐系统,以充分发挥各算法的优势。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值