在pytorch中nn.CrossEntropyLoss()为交叉熵损失函数,用于解决多分类问题,也可用于解决二分类问题。
BCELoss是Binary CrossEntropyLoss的缩写,nn.BCELoss()为二元交叉熵损失函数,只能解决二分类问题。
在使用nn.BCELoss()作为损失函数时,需要在该层前面加上Sigmoid函数,一般使用nn.Sigmoid()即可,
而在使用nn.CrossEntropyLoss()其内部会自动加上Sofrmax层。
在pytorch中nn.CrossEntropyLoss()为交叉熵损失函数,用于解决多分类问题,也可用于解决二分类问题。
BCELoss是Binary CrossEntropyLoss的缩写,nn.BCELoss()为二元交叉熵损失函数,只能解决二分类问题。
在使用nn.BCELoss()作为损失函数时,需要在该层前面加上Sigmoid函数,一般使用nn.Sigmoid()即可,
而在使用nn.CrossEntropyLoss()其内部会自动加上Sofrmax层。