交并比(IoU)

如何判断对象检测算法运作良好呢?可以用交并比函数来评价对象检测算法。
在这里插入图片描述
在对象检测中,我们希望边框能定位目标,但是如果实际边界框如图所示这样,你的算法给出了紫色框,那这个结果是好还是坏呢?我们给出了IoU函数来进行评价。
IoU = ( bounding box ∩ Ground Truth)/ ( bounding box ∪ Ground Truth)
= (绿色)/ (蓝+绿+黄)
在这里插入图片描述
由式子可以知道,IoU越大,越接近1,则边框预测地效果越好。一般在目标检测中,如果IoU>=0.5,就说检测正确。
人们定义 loU 这个概念是为了评价你的对象定位算法是否精准,但更一般地说,loU 衡量了两个边界框重叠的相对大小。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值