Krasjet_Yu.
码龄6年
关注
提问 私信
  • 博客:285,934
    社区:1
    动态:100
    286,035
    总访问量
  • 32
    原创
  • 660,382
    排名
  • 159
    粉丝
  • 4
    铁粉

个人简介:希望以后回忆现在的日子,发现自己做的是对的。

IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:北京市
  • 加入CSDN时间: 2019-01-26
博客简介:

weixin_44623637的博客

查看详细资料
个人成就
  • 获得278次点赞
  • 内容获得117次评论
  • 获得2,051次收藏
  • 代码片获得8,371次分享
  • 博客总排名660,382名
创作历程
  • 3篇
    2021年
  • 30篇
    2020年
  • 8篇
    2019年
成就勋章
TA的专栏
  • 机器视觉
    4篇
  • 深度学习
    10篇
  • 机器人
    2篇
  • ACM
    7篇
  • 视觉SLAM
    5篇
  • 计算机视觉
    13篇
  • CUDA
兴趣领域 设置
  • 人工智能
    opencv计算机视觉机器学习深度学习神经网络pytorch图像处理
创作活动更多

『技术文档』写作方法征文挑战赛

在技术的浩瀚海洋中,一份优秀的技术文档宛如精准的航海图。它是知识传承的载体,是团队协作的桥梁,更是产品成功的幕后英雄。然而,打造这样一份出色的技术文档并非易事。你是否在为如何清晰阐释复杂技术而苦恼?是否纠结于文档结构与内容的完美融合?无论你是技术大神还是初涉此领域的新手,都欢迎分享你的宝贵经验、独到见解与创新方法,为技术传播之路点亮明灯!

55人参与 去参加
  • 最近
  • 文章
  • 代码仓
  • 资源
  • 问答
  • 帖子
  • 视频
  • 课程
  • 关注/订阅/互动
  • 收藏
搜TA的内容
搜索 取消

字符串中特定子序列出现的次数(动态规划)

题目:给定一个字符串,求子序列 “cwbc” 出现的次数思路:动态规划令 dp[i][j] 表示前 i 个字符中匹配了字符串 “cwbc” 中前 j 位(j = 1,2,3,4)的个数。转移方程:dp[i][1] = ( dp[i - 1][1] + ( s[i] == ‘c’ )) % Moddp[i][2] = ( dp[i - 1][2] + ( s[i] == ‘w’ ) * dp[i - 1][1] ) % Moddp[i][3] = ( dp[i - 1][3] + ( s[i] =
原创
发布博客 2021.03.09 ·
3768 阅读 ·
7 点赞 ·
3 评论 ·
21 收藏

子序列个数——动态规划

题目:统计一个字符串中全部不同的子序列的个数思路:动态规划求解令 f[i] = 前 i 个元素中包含的全部子序列的个数那么状态转移方程分为下面两种情况:当第 i 个元素在前面 i - 1 个字符中没有出现时, f[i] = f[i - 1] + f[i - 1] + 1。可以看出 f[i] 分为了三个部分,其中第一个 f[i - 1] 表示前面 i - 1 长度的字符串包含的子序列个数,第二个 f[i - 1] 表示在前面 i - 1 长度的字符串后面添加第 i 个字符,第三个 1 表示第 i 个
原创
发布博客 2021.03.09 ·
762 阅读 ·
1 点赞 ·
0 评论 ·
1 收藏

C++求解N个数的最大公约数、最小公倍数

一、2个数的最大公约数// 辗转相除法int gcd(int a, int b){ if (b == 0) return a; return gcd(b, a % b);}// 也可以直接用STL: __gcd(a, b);二、2个数的最小公倍数int lcm(int a, int b){ int t = gcd(a, b); return a / t * b;}// (a * b) / gcd 也可以,但是a / gcd * b 是为了防止爆longlong证明:  假
原创
发布博客 2021.03.08 ·
2609 阅读 ·
0 点赞 ·
0 评论 ·
16 收藏

XTDrone目标检测

编译Darkent_ROS方法一:(推荐)直接clone,记得加–recurse-submodules,防止文件缺失cd ~/catkin_ws/srcgit clone --recurse-submodules https://gitee.com/robin_shaun/darknet_ros_yolov4.git下载完成后,将darknet_ros_yolov4文件改名darknet_ros_yolov4,我也不知道为什么,不修改的话会报错。然后编译:catkin_make -DCMA
原创
发布博客 2020.11.15 ·
2014 阅读 ·
1 点赞 ·
3 评论 ·
31 收藏

Ubuntu安装opencv3.4.0以及opencv_contrib3.4.0

因为经常重装系统,且每次重新装系统都要重新安装opencv,因此在此记录一下整个过程,这样以后就不用再去找安装教程了。下载opencvhttps://github.com/opencv/opencv 进入克隆下来的opencv目录,切换版本到一个较高版本——此处使用版本号3.4.0:git checkout 3.4.0下载opencv_contribhttps://github.com/opencv/opencv_contrib注意,对于opencv和opencv_contrib都需要切
原创
发布博客 2020.10.24 ·
366 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

Gazebo11的更新与安装

Melodic自带的Gazebo版本过低,建议升级。Gazebo安装见gazebo官网,需注意以下四点。删除gazebo9以及相关插件选用Alternative installation: step-by-step的安装方式,安装最新的gazebo11如果安装有依赖问题,可以使用sudo aptitude install gazebo9,选择合理的依赖解决办法(别把ROS删了)Gazebo本身是独立于ROS的,因此在单独安装了gazebo后还需要安装ROS的Gazebo插件整体流程:首
原创
发布博客 2020.10.23 ·
9217 阅读 ·
12 点赞 ·
8 评论 ·
65 收藏

VINS-Course代码解析——run_euroc前端数据处理

vins_mono总框架如下:主要分为三大块:我们先从主函数(main)入手:主函数中有三个线程,读取完数据集和配置文件的路径后就会进入这三个线程,如下图:thd_BackEnd线程:thd_PubImuData线程:从MH_05_imu0.txt文件中获取imu信息,并检查imu数据是否乱序(根据时间戳),最后将imu装进队列imu_buf中并发布。thd_PubImageData线程:从MH_05_cam0.txt文件中获取image信息,并检查image数据是否乱序,再对图像进行特征
原创
发布博客 2020.08.20 ·
1248 阅读 ·
1 点赞 ·
2 评论 ·
10 收藏

VSCode中配置LaTex

请允许我厚着脸皮沾上三个博客教程,还设为原创…TexLive&VSCode安装配置教程VSCode中使用LaTex的配置VScode + LaTex + TexLive 搭建
原创
发布博客 2020.07.14 ·
296 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

Ubuntu18.04启动后无法进入桌面修复方法(图文)

引言(吐槽可略过):Ubuntu是应用广泛的Linux操作系统,特别是在机器学习应用中,通过调用NVIDIA显卡的GPU进行计算和研究的主要平台之一。但是由于NV显卡的存在,有可能会让Ubuntu在驱动加载上问题,造成开机启动无法进入系统。一开是我以为是电脑的问题,然后各种询问商家,后来一想,能不能是镜像的问题,然后去官网下载IOS,安装好后重启了几次,没什么问题。几天后,发现又启动不了了。然后才想到是不是Ubuntu本身的问题,然后google、baidu后,发现是显卡的问题。一、问题表现进入Ubu
原创
发布博客 2020.06.19 ·
24723 阅读 ·
15 点赞 ·
18 评论 ·
119 收藏

Ubuntu18.04安装教程——超详细的图文教程

Ubuntu18.04镜像
原创
发布博客 2020.06.13 ·
136295 阅读 ·
119 点赞 ·
19 评论 ·
1026 收藏

视觉SLAM —— 李群与李代数

一、群1.1 群的定义群(Group)是一种集合加上一种运算的代数结构。把集合记作A,运算记作 · ,那么群可以记作G = (A,· ),群要求这个运算满足如下条件(封结幺逆——凤姐咬你):封闭性:∀a1,a2 ∈ A, a1 ·a2 ∈ A.结合律: ∀a1,a2,a3 ∈ A, (a1 ·a2)·a3 = a1 ·(a2 ·a3).幺元:∃a0 ∈ A, s.t. ∀a ∈ A, a0 ·a = a·a0 = a.逆:∀a ∈ A, ∃a−1 ∈ A, s.t. a·a−1 = a0..
原创
发布博客 2020.05.30 ·
2217 阅读 ·
1 点赞 ·
0 评论 ·
16 收藏

视觉SLAM——三维空间刚体运动

让我们带着疑问来开启三维空间刚体运动的学习吧!为什么要学习三位刚体运动?三维刚体运动描述的是什么呢?我们研究的机器人的位姿是需要利用三维刚体运动(假设为刚体)的规律来求解。那什么是位姿呢?就是指当前机器人坐标系相对世界坐标系的旋转与位移。为什么是旋转与位移呢?自己脑补去 = =以下涉及的是旋转有关的知识。因为平移操作在数学上就相当于在对坐标系旋转后加上了一个平移向量(列向量)。一、旋转矩阵1.1坐标系间的欧式变换设某个正交基(e1,e2,e3) 经过一次旋转变成了(e’1,e’2,e’3
原创
发布博客 2020.05.28 ·
465 阅读 ·
0 点赞 ·
1 评论 ·
1 收藏

Eigen中几何模块数据演示

一、旋转向量1.0 初始化旋转向量:旋转角为alpha,旋转轴为(x,y,z)Eigen::AngleAxisd rotation_vector(alpha,Vector3d(x,y,z))1.1 旋转向量转旋转矩阵Eigen::Matrix3d rotation_matrix;rotation_matrix=rotation_vector.matrix();Eigen::Matrix3d rotation_matrix;rotation_matrix=rotation_vector.toRota
原创
发布博客 2020.05.27 ·
508 阅读 ·
1 点赞 ·
0 评论 ·
5 收藏

视觉里程计之非直接法

在slam的前端中有两大主流算法,根据是否提取特征点,分为直接法和非直接法。那本文章就带大家领略一下优秀的非直接法叭 wink~我们将分为三部分进行讲解,分别为 特征提取、特征匹配、位姿估计算法设计1.1 特征提取...
原创
发布博客 2020.04.25 ·
524 阅读 ·
2 点赞 ·
0 评论 ·
1 收藏

Opencv DNN人脸检测

前言OpenCV 3.3正式发布后,对深度学习(dnn模块)提供了更好的支持,dnn模块目前支持Caffe、TensorFlow、Torch、PyTorch等深度学习框架。另外,新版本中使用预训练深度学习模型的API同时兼容C++和Python,让系列操作变得非常简便从硬盘加载模型;对输入图像进行预处理;将图像输入网络,获取输出的分类。当然,我们不能、也不该用OpenCV训练深度学...
原创
发布博客 2020.02.28 ·
1997 阅读 ·
1 点赞 ·
1 评论 ·
16 收藏

张正友相机标定Opencv实现以及标定流程&&标定结果评价&&图像矫正流程解析

使用Opencv实现张正友法相机标定之前,有几个问题事先要确认一下,那就是相机为什么需要标定,标定需要的输入和输出分别是哪些?相机标定的目的:获取摄像机的内参和外参矩阵(同时也会得到每一幅标定图像的选择和平移矩阵),内参和外参系数可以对之后相机拍摄的图像就进行矫正,得到畸变相对很小的图像。相机标定的输入:标定图像上所有内角点的图像坐标,标定板图像上所有内角点的空间三维坐标(一般情况下假定图像位...
转载
发布博客 2020.02.20 ·
746 阅读 ·
2 点赞 ·
1 评论 ·
15 收藏

计算机视觉:摄像机标定(循序渐进理解到应用)

一、前言最近在做零件的尺寸测量,由于精度要求,所以需要用到相机标定来消除畸变误差。网上查找了很多资料,看了好多二、摄像机模型这部分是介绍相机模型的,比较劝退,我们后续用到的模型是针孔摄像机,因此大家知道针孔摄像机成像原理就行。为了标定摄像机,我们有必要建立一个模型,该模型由摄像机、镜头和图像采集卡组成,这个模型可以将世界坐标系中三维空间点投影到二维图像中。再机器视觉应用中常用的有两种不同...
原创
发布博客 2020.02.20 ·
2419 阅读 ·
6 点赞 ·
5 评论 ·
8 收藏

相似、仿射、射影变换区别

刚性变换:只有物体的位置(平移变换)和朝向(旋转变换)发生改变,而形状不变,得到的变换称为刚性变换。下面分别从等距变换,相似变换,仿射变换,射影变换几个部分分别介绍:1、等距变换(欧式变换)它相当于是平移变换(t)和旋转变换(R)的复合,等距变换前后长度,面积,线线之间的角度都不变。自由度 6 (3+3)2、相似变换等距变换和均匀缩放(S)的一个复合,类似相似三角形,体积比不变。自...
转载
发布博客 2020.02.20 ·
2201 阅读 ·
0 点赞 ·
0 评论 ·
7 收藏

线性动态规划

一,概念篇1,动态规划:通过计算出小问题的最优解,可以推出大问题的最优解,从而可以推出更大问题的最优解,最小问题即是边界情况。2,子问题(小问题):子问题是一个与原问题有着类似的结构,但规模比原问题小的问题。3,最优子结构:动态规划的问题一般是求解全局最优解,而全局最优解是由局部的最有解一步一步推出,局部的最优解称为最优子结构。4,动态规划的基本思想:将待求解的问题划分为若干个阶段(子问题...
转载
发布博客 2020.02.16 ·
375 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

动态规划之区间DP详解

这几天在做有关dp的题,看到一个石子合并的问题,本来以为是个贪心,后来仔细一想压根不是贪心。贪心算法的思路是每次都取最大的,然而石子合并问题有个限制条件就是每次只能取相邻的,这就决定了它不是个贪心…我们接下来会先直接上区间DP的模板,然后结合石子合并这道经典例题来讲解。一、区间DP区间dp其实就是一种建立在线性结构上的对区间的动态规划。主要的方法有两种,记忆化搜索和递推。区间dp,顾名思义...
原创
发布博客 2020.02.16 ·
3209 阅读 ·
6 点赞 ·
1 评论 ·
18 收藏
加载更多