有监督学习与无监督学习

1.有监督学习

有监督学习(supervised learning):从给定的有标注的训练数据集中学习出一个函数(模型参数),当新的数据到来时可以根据这个函数预测结果。 常见任务包括分类回归
在这里插入图片描述

2.无监督学习

无监督学习(unsupervised learning):没有标注的训练数据集,需要根据样本间的统计规律对样本集进行分析,常见任务如聚类等。

在这里插入图片描述

3.带标记数据与未带标记数据

通常,未标记数据由自然或人为人工制品的样本组成,您可以从世界上相对容易地获得这些样本.未标记数据的一些示例可能包括照片,录音,视频,新闻,推文,X射线(如果您正在处理医疗应用程序)等.每条未标记数据都没有"解释",它是只是包含数据,而没有其他内容.

标记数据通常会获取一组未标记的数据,并使用某种有意义的"标签","标签"或"类"来扩大该未标记数据的每一条,这些信息在某种意义上是有意义的或可取的要知道.例如,上述类型的未标记数据的标签可能是这张照片包含一匹马还是一头牛,在此音频录音中说出了哪些字眼,在此视频中正在执行什么类型的操作,该新闻报道的主题是什么?是,这条推文的总体感觉是什么,该X射线中的点是否是肿瘤等.

数据标签通常是通过让人们对给定的未标记数据做出判断而获得的(例如,“这张照片中是否包含马或牛?”),并且获取这些数据的成本要比未标记的原始数据高得多.

获得标记的数据集后,可以将机器学习模型应用于数据,以便可以将新的未标记数据呈现给模型,并可以为该未标记数据猜测或预测可能的标签.

机器学习有许​​多活跃的研究领域,旨在整合未标记和标记的数据以建立更好,更准确的世界模型.半监督学习尝试将未标记的数据和已标记的数据(或更普遍的是,只有一些数据点带有标签的未标记数据集)组合到集成模型中.深度神经网络和特征学习是研究的领域,它们试图仅构建未标记数据的模型,然后将来自标签的信息应用于模型的有趣部分.

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值