问题解决 | RuntimeError: CUDA error: invalid device ordinalCUDA kernel errors

文章讲述了在使用gradioAPI时遇到CUDA错误,特别是在多GPU环境中只指定了一张卡。作者通过设置CUDA_VISIBLE_DEVICES环境变量尝试解决问题,最终发现是由于API中同时指定了cuda:0和device:1导致的。
摘要由CSDN通过智能技术生成

错误:

RuntimeError: CUDA error: invalid device ordinal
CUDA kernel errors might be asynchronously reported at some other API call, so the stacktrace below might be incorrect.
For debugging consider passing CUDA_LAUNCH_BLOCKING=1.
Compile with `TORCH_USE_CUDA_DSA` to enable device-side assertions.

RuntimeError(运行时错误): CUDA 错误:设备序号无效
CUDA 内核错误可能会在其他 API 调用中异步报告,因此下面的堆栈跟踪可能不正确。
为便于调试,可考虑通过 CUDA_LAUNCH_BLOCKING=1。
使用 `TORCH_USE_CUDA_DSA` 进行编译,以启用设备端断言。

错误分析

在进行测试时,运行gradio的api文件,服务器有5张卡,开了jupyter lab,只指定了一张卡,然后出现以上问题

尝试

一般来说,因为是一张卡,所以默认指定cuda:0,尝试了3种方法

# 方法1
import os
os.environ["CUDA_VISIBLE_DEVICES"] = "0"


# 方法2
CUDA_VISIBLE_DEVICES=0 python gradio_api.py

-> 运行后出现同样错误

# 方法3
CUDA_VISIBLE_DEVICES=1 python gradio_api.py
-> RuntimeError: No CUDA GPUs are available

最终解决:

gradio_api.py中含有 cuda,device的指定代码

快速搜索键:Ctrl+F , 搜索cuda/device,查看是否指定号码

我的错误是因为cuda处指定cuda:0,而device=1,所以出现错误。

### 回答1: 这是一个 CUDA 错误,表示无效的设备序号。可能是在其他 API 调用时异步报告 CUDA 内核错误,因此下面的堆栈跟踪可能是不正确的。如果要调试,请考虑传递 cuda_launch_blocking=1。 ### 回答2: 遇到RuntimeError: cuda error: invalid device ordinal,意味着使用了无效的GPU设备编号,通常是因为代码中的设备编号超出了当前系统可用GPU的范围。GPU设备编号从0开始计数,所以只有当系统有多个GPU设备时,不能将设备编号设置为其总数或更高的值。 此外,还出现了“cuda kernel errors might be asynchronously reported at some other api call,so the stacktrace below might be incorrect.”的提示。这是因为CUDA内核错误可能是在某些其他API调用时异步报告的,因此堆栈跟踪可能是不正确的。因此,建议将cuda_launch_blocking设置为1以在启动CUDA内核时阻塞,这有助于更准确地调试CUDA内核错误。 为了解决RuntimeError,我们需要确认代码中使用的gpu编号是否正确,并确保其范围不超出了当前系统可用GPU的范围。还可以采用调试方法设置cuda_launch_blocking为1,以帮助更准确地定位和修复CUDA内核错误。 如果以上方法仍然无法解决问题,则需要进一步检查CUDA库是否正确安装和配置,以及系统上是否存在其他驱动程序或软件问题导致的冲突或错误。 ### 回答3: 该错误意味着在 CUDA 设备编号方面存在问题CUDA 函数调用异步报告可能出现在其他 API 调用中,因此下面的堆栈跟踪可能不正确。如果需要进行调试,请考虑使用 cuda_launch_blocking=1 参数。 在 CUDA 程序中,通常会有多个设备,并且每个设备都有唯一的编号。此错误可能是由于设备编号无效造成的。检查代码中关于设备编号的处理是否正确,比如指定的设备编号是否存在,或者是否使用了正确的设备编号等等。还有一种可能是由于多个线程同时访问了同一个设备,造成了冲突导致 CUDA 函数调用失败。 另外,由于 CUDA 函数调用是异步的,可能会在其他 API 调用中异步报告错误,此时堆栈跟踪可能不完全准确。为了解决这个问题,可以尝试将 cuda_launch_blocking 设置为 1,使 CUDA 函数调用变成同步的,这样就可以更准确地检测到错误的位置和原因,方便进行调试和排查问题。 总之,处理该错误需要进行仔细的代码检查和调试,首先要排除设备编号方面的问题,然后考虑其他可能性,同时注意设置 cuda_launch_blocking 参数以获得更准确的错误信息。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

夏天|여름이다

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值