信息流概述

                                                 信息流概述

 

目录

                                                 信息流概述

信息流SEM:

信息流定义:

信息流渠道:

信息流基本玩法:

今日头条信息流:


 

 

 

信息流SEM:

  1. 搜索竞价推广+信息流推广;

信息流定义:

  1. 各类app的内容中穿插的付费广告;
  2. 原生广告中的一种;例如:电视剧中植入的广告。

信息流渠道:

  1. 社交需求
    1. 微信
    2. qq
    3. 探探
  2. 资讯需求
    1. 今日头条
    2. QQ看点
    3. 腾讯新闻
    4. 手百
  3. 视频需求
    1. 常规视频
      1. 爱奇艺
      2. 腾讯视频
      3. 优酷
      4. 芒果
      5. ……
    2. 短视频
      1. 抖音
      2. 火山小视频
      3. 快手
      4. B站
  4. 其他:知乎、美团……

信息流基本玩法:

  1. 触发机制:
    1. 广告找人
      1. 人的行为可以标签化
        1. 丹哥
        2. 爱彭于晏
        3. 网络营销开车最快的
      2. 抖音13亿用户标签化
      3. 人群画像
  2. 排名机制
    1. 竞价排名
      1. ECPM千次展现收益
        1. 点击率
        2. 出价
        3. 转化率
        4. ……
    2.  
  3. 展现内容
    1. 与内容流样式保持一致
  4. 出价机制(或付费机制)
    1. CPC出价(为关键词点击一次所出的最高价)
    2. CPM出价(展现一千次计一次费用)
    3. 智能出价(或转化出价)https://blog.csdn.net/weixin_44688671/article/details/103717598
      1. OCPM千次展现计费一次
      2. OPCP每次点击一次收费一次
      3. OCPA转化计费
      4. 优先用1、2
  5. 计费机制
    1. 下位计费制

今日头条信息流:

  1. 字节跳动公司
    1. 今日头条
    2. 抖音
    3. 火山
    4. 西瓜
    5. 懂车帝
    6. 皮皮虾
    7. 内涵段子

 

 

  • 1
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
Hadoop 是一个由 Apache 组织开发的分布式计算框架,它的核心组件包括 HDFS 和 MapReduce。除此之外,Hadoop 还有许多与之相关的工具和组件,下面是 Hadoop 的各个组件的简要概述: 1. HDFS(Hadoop Distributed File System):Hadoop 的分布式文件系统,用于存储大数据集,具有高容错性、高可靠性、高可扩展性等特点。 2. MapReduce:Hadoop 的分布式计算框架,用于处理大规模数据的计算任务,可并行处理数据,并将结果合并输出。 3. YARN(Yet Another Resource Negotiator):Hadoop 的资源管理器,负责集群资源的调度和管理,在 Hadoop 2.x 版本中取代了旧版的 JobTracker 和 TaskTracker。 4. Hive:基于 Hadoop 的数据仓库工具,用于处理结构化数据,提供类 SQL 查询语言和数据存储功能。 5. Pig:基于 Hadoop 的数据流编程工具,用于处理非结构化数据,提供类 SQL 查询语言和数据转换功能。 6. HBase:基于 Hadoop 的分布式数据库,用于存储大规模结构化数据,支持高并发读写操作。 7. ZooKeeper:分布式应用程序协调服务,用于在分布式系统中维护配置信息、命名服务、分布式锁等。 8. Sqoop:用于在 Hadoop 和关系型数据库之间进行数据传输的工具,支持 MySQL、Oracle、PostgreSQL、SQL Server 等多种数据库。 9. Flume:用于将大规模日志数据从各种源(如 Web 服务器、数据库等)传输到 Hadoop 中的工具。 10. Oozie:基于 Hadoop 的工作流调度系统,用于管理和调度分布式计算任务。 11. Mahout:基于 Hadoop 的机器学习框架,提供多种机器学习算法的实现。 以上是 Hadoop 的主要组件,每个组件都有其独特的作用和特点,在 Hadoop 的生态系统中相互配合,共同构建出一个高效可靠的大数据处理平台。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

dba女猿

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值