【线代】矩阵的列空间和零空间 列空间:在Ax=b中,A的所有列向量的线性组合,构成一个向量空间(列空间),则该方程有解的条件是:b向量在此列空间里。比如,一个线性方程组中有:4个方程,3个未知数,则A中包含3个4维向量,最多构成一个3维的向量空间(若3个列向量线性无关),因为解b是四维的,那么b将有很多种可能不在这个3维的向量空间里。零空间:在Ax=0中,x的所有可能解即是一个零空间。以上也对应了两种构造向量空间的方法:1.列空间:用向量的线性组合构成向量空间;2.零空间:方程的解构成向量空间...
【数电】半导体存储器的分类及原理 一、ROM1.1 掩膜ROM上图其实是ROM的结构,不只针对于掩膜。其实就是地址译码+访问存储,一个地址对应一个字,假设有N条地址线,M条数据线,那么存储器的容量=字数*位数=2^N * M。ROM的地址译码原理相同,不同类型的ROM只改动了交叉点的器件。1.2 可编程ROM(PROM)熔丝,故一次性编程1.3 可擦除的可编程ROM(EPROM)1.4 电可擦除的可编程ROM(EEPROM)1.5 快闪存储器(Flash Memory)PS...
【数电】理解MOS管的Vth(增强型) 其实就是,对NMOS来说,栅极底下是P型半导体,有空穴和B-离子,栅衬之间加电压,电子往栅极底下跑,与空穴复合,此时形成耗尽层(虽然因为B-离子的原因带负电,但无法自由移动);当电压超过Vth,多余电子来到栅极底下,可自由移动,形成沟道。...