给定一个二叉树,判断它是否是高度平衡的二叉树。
本题中,一棵高度平衡二叉树定义为:
一个二叉树每个节点 的左右两个子树的高度差的绝对值不超过 1 。
示例 1:
输入:root = [3,9,20,null,null,15,7]
输出:true
示例 2:
输入:root = [1,2,2,3,3,null,null,4,4]
输出:false
示例 3:
输入:root = []
输出:true
树中的节点数在范围 [0, 5000] 内
-104 <= Node.val <= 104
思路:
对二叉树做后序遍历,从底至顶返回子树深度,若判定某子树不是平衡树则剪枝,直接向上返回。
算法流程:
1.当节点左右子树的深度之差相差<=1,则返回当前子树的深度,即节点root的左右子树的深度的最大值+1(max(left,right)+1)。
2.当节点root的左右子树深度差>2,则返回-1.表示它不是一颗平衡树。剪枝,返回。
3.当root为空,返回0,越过叶节点,高度为0。返回。
AC代码:(C++):
class Solution {
public:
bool isBalanced(TreeNode* root) {
if (recur(root) == -1) return false;
return true;
}
int recur(TreeNode* root) {
if (root == nullptr) return 0;
int left = recur(root->left);
if (left == -1) return -1;
int right = recur(root->right);
if (right == -1) return -1;
return abs(left - right) < 2 ? max(left, right) + 1 : -1;
}
};