数据基础: 04线性代数基础行列式(矩阵)

在这里插入图片描述

二阶

在这里插入图片描述

三阶

在这里插入图片描述
在这里插入图片描述

矩阵和数据之间的关系。

在这里插入图片描述

行列式 n,n ;矩阵m行,n列

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

逆序数

在行列式的计算中,逆序数用于决定每一项前面的符号。
如果一个排列的逆序数是偶数,则该项前面的符号为
如果是奇数,则符号为
在这里插入图片描述

矩阵的组成

在这里插入图片描述

方阵是什么

在这里插入图片描述

0相关

在这里插入图片描述

对角线

在这里插入图片描述

两个矩阵行列数相同的时候称为同型矩阵

在同型的前提下并且各个元素相等,这就是矩阵相等了!

在这里插入图片描述

计算

加减法:

在这里插入图片描述

数乘运算

在这里插入图片描述

矩阵的乘法

在这里插入图片描述

A行=B列

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

乘法没有交换律

在这里插入图片描述

矩阵乘法的基本规则

在这里插入图片描述

在这里插入图片描述

4-矩阵的几种变换

在这里插入图片描述

矩阵转置

在这里插入图片描述

逆向

在这里插入图片描述

对称矩阵

在这里插入图片描述

逆矩阵

在这里插入图片描述

5-矩阵的秩

在这里插入图片描述
在这里插入图片描述

求其极大线性无关组假设有

在这里插入图片描述

在这里插入图片描述
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述

在这里插入图片描述

矩阵秩的计算过程

计算矩阵秩的常见方法有几种,其中最常用的两种方法是高斯消元法和利用行列式(适用于方阵)。以下是常用的高斯消元法计算矩阵秩的步骤:

高斯消元法

在这里插入图片描述

利用行列式法

在这里插入图片描述

矩阵的行列式

在这里插入图片描述
在这里插入图片描述

6-内积与正交

[x,y]]叫做向量的内积。

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

向量的长度

在这里插入图片描述
在这里插入图片描述

向量的正交

在这里插入图片描述

两两正交的非零向量组成的向量组成为正交向量组

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

在这里插入图片描述

规范正交基

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值