数学 - 基本初等函数导数公式及求导法则

本文深入探讨了数学中导数的多种求解方法,包括基本初等函数导数公式、三角函数、指数和对数函数的运算技巧,以及隐函数、参数方程和幂指函数的求导法则。通过实例解析,帮助读者掌握复杂表达式的求导方法。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

数学 - 基本初等函数导数公式及求导法则


img


三角函数相关运算

img


指数和对数函数相关运算

对数函数的强大之处在于可以变积为和,变商为差,化幂为系数。在求幂指函数或某些复杂表达式的函数的导数时,将原来的函数转化为对数函数后可方便求导。

img


隐函数求导

“如果方程F(x,y)=0能确定y是x的函数,那么称这种方式表示的函数是隐函数。一般情况下无法写成y=f(x)这种格式,任何的显函数都可以转化为隐函数,但隐函数不一定能转化为显函数。隐函数求导规则是分别将等式两边对x求导,再解出dy/dx。

例: x2 + y2 = 1,求dy/dx

img


参数方程求导

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-JO1C727J-1582452235457)(http://img.ph.126.net/6nfLw6VgWHK2uZkGQdageA==/1020346790592964129.png)]


幂指函数求导

幂指函数不能直接用初等函数公式求导,一般做法是两边同时取对数,再对x求导。

img


某些复杂表达式函数求导

对于某些复杂表达式函数的求导,同样先取对数后再求导。

img

img


Maple求导

初等函数求导

img

img

img

img

隐函数求导

img

参数方程函数求导

img

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值