二叉树的应用(堆排序)

堆排序基本介绍

① 堆排序是利用堆这种数据结构而设计的一种排序算法,堆排序是一种选择排序,它的最坏,最好,平均时间复杂度均为O(nlogn),它也是不稳定排序。

② 堆是具有以下性质的完全二叉树:每个结点的值都大于或等于其左右孩子结点的值,称为大顶堆, 注意 : 没有要求结点的左孩子的值和右孩子的值的大小关系。

③ 每个结点的值都小于或等于其左右孩子结点的值,称为小顶堆

④ 大顶堆举例说明
在这里插入图片描述
我们对堆中的结点按层进行编号,映射到数组中就是下面这个样子:
在这里插入图片描述
大顶堆特点:arr[i] >= arr[2*i+1] && arr[i] >= arr[2*i+2] i 对应第几个节点,i从0开始编号

⑤ 小顶堆举例说明
在这里插入图片描述
小顶堆:arr[i] <= arr[2*i+1] && arr[i] <= arr[2*i+2] /i 对应第几个节点,i从0开始编号

⑥ 一般升序采用大顶堆,降序采用小顶堆

堆排序基本思想

① 将待排序序列构造成一个大顶堆
② 此时,整个序列的最大值就是堆顶的根节点。
③ 将其与末尾元素进行交换,此时末尾就为最大值。
④ 然后将剩余 n - 1个元素重新构造成一个堆,这样会得到 n 个元素的次小值。如此反复执行,便能得到一个有序序列了。

可以看到在构建大顶堆的过程中,元素的个数逐渐减少,最后就得到一个有序序列了.

具体步骤

步骤一
构造初始堆。将给定无序序列构造成一个大顶维(一般升序采用大顶堆降序采用小顶堆)。
原始的数组 [4,6,8,5,9]

① 假设给定无序序列结构如下
在这里插入图片描述
② 此时我们从最后一个非叶子结点开始 (叶结点自然不用调整,第一个非叶子结点arr.length/2-1=5/2-1=1,也就是下面的6结点)、从左至右,从下至上进行调整。
在这里插入图片描述
③ 找到第二个非叶节点4,由于[4,9,8]中9元素最大,4和9交换。
在这里插入图片描述

④ 这时,交换导致了子根[4,5,6]结构混乱,继续调整,[4,5,6]中6最大,交换4和6.
在这里插入图片描述

此时,我们就将一个无序序列构造成了一个大顶堆。

步骤二
将堆页元素与末尾元素进行交换,使末尾元素最大。然后继续调整堆,再将堆顶元素与末尾元素交换,得到第二大元素。如此反复进行交换、重建、交换。

① 将堆页元素9和末尾元素4进行交换
在这里插入图片描述

② 重新调整结构,使其继续满足堆定义
在这里插入图片描述

③ 再将堆顶元素8与末尾元素5进行交换,得到第二大元素8.
在这里插入图片描述

再简单总结下堆排序的基本思路︰

步骤一:
① 将无序序列构建成一个堆,根据升序降序需求选择大顶堆或小顶堆

步骤二:
② 将堆页元素与末尾元素交换,将最大元素"沉"到数组末端;
③ 重新调整结构,使其满足堆定义,然后继续交换堆顶元素与当前末尾元素,反复执行调整+交换步骤,直到整个序列有序。

代码实现

第一、二次调整

/**
 * @author acoffee
 * @create 2022-01-03 22:10
 */
public class HeapSort {
    public static void main(String[] args) {
        //要求将数组进行升序排序
        int arr[] = {4, 6, 8, 5, 9};
        heapSort(arr);
    }

    //编写一个堆排序的方法
    public static void heapSort(int[] arr) {
        //分步完成
        adjustHeap(arr, 1, arr.length);
        System.out.println("第一次调整:" + Arrays.toString(arr));//第一次调整:[4, 9, 8, 5, 6]


        adjustHeap(arr, 0, arr.length);
        System.out.println("第二次调整:" + Arrays.toString(arr));//第二次调整:[9, 6, 8, 5, 4]
    }


    //将一个数组(二叉树), 调整成一个大顶堆

    /**
     * 功能:完成 将以 i 对应的非叶子结点的树调整成大顶堆
     * 举例 int arr[] = {4, 6, 8, 5, 9}; => adjustHeap => 得到 {4, 9, 8, 5, 6}
     * 如果我们再次调用adjusHeap 传入的是 i = 0 => 得到 {4, 9, 8, 5, 6} => {9, 6, 8, 5 ,4}
     *
     * @param arr    待调整的数组
     * @param i      表示叶子结点在数组中索引
     * @param length 表示对多少个元素继续调整,length是在逐渐减少
     */
    public static void adjustHeap(int arr[], int i, int length) {
        int temp = arr[i];//先取出当前元素的值, 保存在临时变量
        //开始调整
        //说明:k= k * 2 + 1---> k 是 i 结点的左子节点
        for (int k = i * 2 + 1; k < length; k = k * 2 + 1) {
            //说明左子节点的值小于右子节点的值
            //k+1 < length 增加效率
            if (k + 1 < length && arr[k] < arr[k + 1]) {
                k++; // k指向右子节点
            }

            if (arr[k] < temp) { //如果子节点大于父节点
                //相当于把较大的值赋给当前结点(往上移动)
                arr[i] = arr[k];
                i = k;// !! i 指向 k,继续循环比较
            } else {
                // 不满足上面两个结点就break
                // 这里我们按break的原因就是我们这个比较是从左至右,从下至上进行调整。
                // 意思就是下面的我们之前是调整过了的,所以我们能这样比较
                break;
            }
            //当for循环结束后,我们已经将以i 为节点的树的最大值,放在了最顶端(局部)
            arr[i] = temp;//将temp放到调整后的位置
        }
    }
}

完整代码

/**
 * @author acoffee
 * @create 2022-01-03 22:10
 */
public class HeapSort {
    public static void main(String[] args) {
        //要求将数组进行升序排序
        int[] arr = {4, 6, 8, 5, 9};
        heapSort(arr);
    }

    //编写一个堆排序的方法
    public static void heapSort(int[] arr) {
//        //分步完成
//        adjustHeap(arr, 1, arr.length);
//        System.out.println("第一次调整:" + Arrays.toString(arr));//第一次调整:[4, 9, 8, 5, 6]
//
//
//        adjustHeap(arr, 0, arr.length);
//        System.out.println("第二次调整:" + Arrays.toString(arr));//第二次调整:[9, 6, 8, 5, 4]

        //完成最终代码
        int temp = 0;
        /**
         步骤一:
         ①将无序序列构建成一个堆,根据升序降序需求选择大顶堆或小顶堆
        */
         for (int i = arr.length / 2 - 1; i >= 0; i--) {
            adjustHeap(arr, i, arr.length);
        }

        /**
         步骤二:
        ② 将堆页元素与末尾元素交换,将最大元素"沉"到数组末端;
        ③ 重新调整结构,使其满足堆定义,然后继续交换堆顶元素与当前末尾元素,反复执行调整+交换步骤,直到整个序列有序。
         */
        for(int j = arr.length - 1;j > 0; j--){
            //交换
            temp = arr[j];
            arr[j] = arr[0];
            arr[0] = temp;
            //长度会逐渐变小 =>对应j
            adjustHeap(arr, 0, j);
        }

        System.out.println("数组 = " + Arrays.toString(arr)); // 数组 = [4, 5, 6, 8, 9]
    }

    //将一个数组(二叉树), 调整成一个大顶堆

    /**
     * 功能:完成 将以 i 对应的非叶子结点的树调整成大顶堆
     * 举例 int arr[] = {4, 6, 8, 5, 9}; => adjustHeap => 得到 {4, 9, 8, 5, 6}
     * 如果我们再次调用adjusHeap 传入的是 i = 0 => 得到 {4, 9, 8, 5, 6} => {9, 6, 8, 5 ,4}
     *
     * @param arr    待调整的数组
     * @param i      表示叶子结点在数组中索引
     * @param length 表示对多少个元素继续调整,length是在逐渐减少
     */
    public static void adjustHeap(int[] arr, int i, int length) {
        int temp = arr[i];//先取出当前元素的值, 保存在临时变量
        //开始调整
        //说明:k= k * 2 + 1---> k 是 i 结点的左子节点
        for (int k = i * 2 + 1; k < length; k = k * 2 + 1) {
            //说明左子节点的值小于右子节点的值
            //k+1 < length 增加效率
            if (k + 1 < length && arr[k] < arr[k + 1]) {
                k++; // k指向右子节点
            }

            if (arr[k] > temp) { //如果子节点大于父节点
                //相当于把较大的值赋给当前结点(往上移动)
                arr[i] = arr[k];
                i = k;// !! i 指向 k,继续循环比较
            } else {
                // 不满足上面两个结点就break
                // 这里我们按break的原因就是我们这个比较是从左至右,从下至上进行调整。
                // 意思就是下面的我们之前是调整过了的,所以我们能这样比较
                break;
            }
            //当for循环结束后,我们已经将以i 为节点的树的最大值,放在了最顶端(局部)
            arr[i] = temp;//将temp放到调整后的位置
        }
    }
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值