堆排序基本介绍
① 堆排序是利用堆这种数据结构而设计的一种排序算法,堆排序是一种选择排序,它的最坏,最好,平均时间复杂度均为O(nlogn),它也是不稳定排序。
② 堆是具有以下性质的完全二叉树:每个结点的值都大于或等于其左右孩子结点的值,称为大顶堆, 注意 : 没有要求结点的左孩子的值和右孩子的值的大小关系。
③ 每个结点的值都小于或等于其左右孩子结点的值,称为小顶堆
④ 大顶堆举例说明

我们对堆中的结点按层进行编号,映射到数组中就是下面这个样子:

大顶堆特点:arr[i] >= arr[2*i+1] && arr[i] >= arr[2*i+2] i 对应第几个节点,i从0开始编号
⑤ 小顶堆举例说明

小顶堆:arr[i] <= arr[2*i+1] && arr[i] <= arr[2*i+2] /i 对应第几个节点,i从0开始编号
⑥ 一般升序采用大顶堆,降序采用小顶堆
堆排序基本思想
① 将待排序序列构造成一个大顶堆
② 此时,整个序列的最大值就是堆顶的根节点。
③ 将其与末尾元素进行交换,此时末尾就为最大值。
④ 然后将剩余 n - 1个元素重新构造成一个堆,这样会得到 n 个元素的次小值。如此反复执行,便能得到一个有序序列了。
可以看到在构建大顶堆的过程中,元素的个数逐渐减少,最后就得到一个有序序列了.
具体步骤
步骤一
构造初始堆。将给定无序序列构造成一个大顶维(一般升序采用大顶堆降序采用小顶堆)。
原始的数组 [4,6,8,5,9]
① 假设给定无序序列结构如下

② 此时我们从最后一个非叶子结点开始 (叶结点自然不用调整,第一个非叶子结点arr.length/2-1=5/2-1=1,也就是下面的6结点)、从左至右,从下至上进行调整。

③ 找到第二个非叶节点4,由于[4,9,8]中9元素最大,4和9交换。

④ 这时,交换导致了子根[4,5,6]结构混乱,继续调整,[4,5,6]中6最大,交换4和6.

此时,我们就将一个无序序列构造成了一个大顶堆。
步骤二
将堆页元素与末尾元素进行交换,使末尾元素最大。然后继续调整堆,再将堆顶元素与末尾元素交换,得到第二大元素。如此反复进行交换、重建、交换。
① 将堆页元素9和末尾元素4进行交换

② 重新调整结构,使其继续满足堆定义

③ 再将堆顶元素8与末尾元素5进行交换,得到第二大元素8.

再简单总结下堆排序的基本思路︰
步骤一:
① 将无序序列构建成一个堆,根据升序降序需求选择大顶堆或小顶堆
步骤二:
② 将堆页元素与末尾元素交换,将最大元素"沉"到数组末端;
③ 重新调整结构,使其满足堆定义,然后继续交换堆顶元素与当前末尾元素,反复执行调整+交换步骤,直到整个序列有序。
代码实现
第一、二次调整
/**
* @author acoffee
* @create 2022-01-03 22:10
*/
public class HeapSort {
public static void main(String[] args) {
//要求将数组进行升序排序
int arr[] = {4, 6, 8, 5, 9};
heapSort(arr);
}
//编写一个堆排序的方法
public static void heapSort(int[] arr) {
//分步完成
adjustHeap(arr, 1, arr.length);
System.out.println("第一次调整:" + Arrays.toString(arr));//第一次调整:[4, 9, 8, 5, 6]
adjustHeap(arr, 0, arr.length);
System.out.println("第二次调整:" + Arrays.toString(arr));//第二次调整:[9, 6, 8, 5, 4]
}
//将一个数组(二叉树), 调整成一个大顶堆
/**
* 功能:完成 将以 i 对应的非叶子结点的树调整成大顶堆
* 举例 int arr[] = {4, 6, 8, 5, 9}; => adjustHeap => 得到 {4, 9, 8, 5, 6}
* 如果我们再次调用adjusHeap 传入的是 i = 0 => 得到 {4, 9, 8, 5, 6} => {9, 6, 8, 5 ,4}
*
* @param arr 待调整的数组
* @param i 表示叶子结点在数组中索引
* @param length 表示对多少个元素继续调整,length是在逐渐减少
*/
public static void adjustHeap(int arr[], int i, int length) {
int temp = arr[i];//先取出当前元素的值, 保存在临时变量
//开始调整
//说明:k= k * 2 + 1---> k 是 i 结点的左子节点
for (int k = i * 2 + 1; k < length; k = k * 2 + 1) {
//说明左子节点的值小于右子节点的值
//k+1 < length 增加效率
if (k + 1 < length && arr[k] < arr[k + 1]) {
k++; // k指向右子节点
}
if (arr[k] < temp) { //如果子节点大于父节点
//相当于把较大的值赋给当前结点(往上移动)
arr[i] = arr[k];
i = k;// !! i 指向 k,继续循环比较
} else {
// 不满足上面两个结点就break
// 这里我们按break的原因就是我们这个比较是从左至右,从下至上进行调整。
// 意思就是下面的我们之前是调整过了的,所以我们能这样比较
break;
}
//当for循环结束后,我们已经将以i 为节点的树的最大值,放在了最顶端(局部)
arr[i] = temp;//将temp放到调整后的位置
}
}
}
完整代码
/**
* @author acoffee
* @create 2022-01-03 22:10
*/
public class HeapSort {
public static void main(String[] args) {
//要求将数组进行升序排序
int[] arr = {4, 6, 8, 5, 9};
heapSort(arr);
}
//编写一个堆排序的方法
public static void heapSort(int[] arr) {
// //分步完成
// adjustHeap(arr, 1, arr.length);
// System.out.println("第一次调整:" + Arrays.toString(arr));//第一次调整:[4, 9, 8, 5, 6]
//
//
// adjustHeap(arr, 0, arr.length);
// System.out.println("第二次调整:" + Arrays.toString(arr));//第二次调整:[9, 6, 8, 5, 4]
//完成最终代码
int temp = 0;
/**
步骤一:
①将无序序列构建成一个堆,根据升序降序需求选择大顶堆或小顶堆
*/
for (int i = arr.length / 2 - 1; i >= 0; i--) {
adjustHeap(arr, i, arr.length);
}
/**
步骤二:
② 将堆页元素与末尾元素交换,将最大元素"沉"到数组末端;
③ 重新调整结构,使其满足堆定义,然后继续交换堆顶元素与当前末尾元素,反复执行调整+交换步骤,直到整个序列有序。
*/
for(int j = arr.length - 1;j > 0; j--){
//交换
temp = arr[j];
arr[j] = arr[0];
arr[0] = temp;
//长度会逐渐变小 =>对应j
adjustHeap(arr, 0, j);
}
System.out.println("数组 = " + Arrays.toString(arr)); // 数组 = [4, 5, 6, 8, 9]
}
//将一个数组(二叉树), 调整成一个大顶堆
/**
* 功能:完成 将以 i 对应的非叶子结点的树调整成大顶堆
* 举例 int arr[] = {4, 6, 8, 5, 9}; => adjustHeap => 得到 {4, 9, 8, 5, 6}
* 如果我们再次调用adjusHeap 传入的是 i = 0 => 得到 {4, 9, 8, 5, 6} => {9, 6, 8, 5 ,4}
*
* @param arr 待调整的数组
* @param i 表示叶子结点在数组中索引
* @param length 表示对多少个元素继续调整,length是在逐渐减少
*/
public static void adjustHeap(int[] arr, int i, int length) {
int temp = arr[i];//先取出当前元素的值, 保存在临时变量
//开始调整
//说明:k= k * 2 + 1---> k 是 i 结点的左子节点
for (int k = i * 2 + 1; k < length; k = k * 2 + 1) {
//说明左子节点的值小于右子节点的值
//k+1 < length 增加效率
if (k + 1 < length && arr[k] < arr[k + 1]) {
k++; // k指向右子节点
}
if (arr[k] > temp) { //如果子节点大于父节点
//相当于把较大的值赋给当前结点(往上移动)
arr[i] = arr[k];
i = k;// !! i 指向 k,继续循环比较
} else {
// 不满足上面两个结点就break
// 这里我们按break的原因就是我们这个比较是从左至右,从下至上进行调整。
// 意思就是下面的我们之前是调整过了的,所以我们能这样比较
break;
}
//当for循环结束后,我们已经将以i 为节点的树的最大值,放在了最顶端(局部)
arr[i] = temp;//将temp放到调整后的位置
}
}
}
1898

被折叠的 条评论
为什么被折叠?



