一、整体介绍
在数据分析师实际工作中,指标异动分析是一种必备的技能,本文根据相关资料和自身工作经验总结了指标异动的分析流程。
具体的业务流程详见下图。

(一)明确数据准确性和问题
在分析异动时,首先应该问三个问题:谁在动?怎么比?是否正常?谁在动就需要明确数据口径,怎么比需要确定时间周期,环比还是同比?是否正常决定是否需要进一步分析,常见核对方法有观察其他相关指标是否有剧烈变化,如果有需要和研发同学确定有无数据bug;排除后拉长时间周期查看是否有周期效应,譬如在打车行业夏季打车时可能遇到空调问题类纠纷,导致核心指标变化;最后利用统计方法,比如3-sigma准则、箱线图等确定是否为随机波动。
(二)做出假设,定位问题
当确定需要进一步分析数据时,我们可以采取从外部到内部、从宏观到微观、从粗到细、从核心到外围的假设检验方法。其中从核心到外围指的是从常见的、业务相关的假设入手,抓住重点,但这通常需要长期的业务经验才能得到,新手同学可以向资龄较高的同事请教。
一般来说,先假设再验证是一篇完整数据异动分析的主要内容。这里我列举了两个大方向:宏观+外部、微观+内部。
宏观+外部主要指的是相关政策、经济环境等的变化,例如国家对教育的改革要求使得需要教培行业的公司利益受到打击;

本文详细介绍了数据分析师在面对指标异动时的分析流程,包括明确数据准确性、问题定位和原因总结。通过案例分析了GMV下降的情况,涉及外部环境、内部因素、用户行为和产品影响等多个层面的假设检验与拆解方法,最终提供解决方案建议。重点关注了因子分解法和维度拆解在问题定位中的应用。
最低0.47元/天 解锁文章
676

被折叠的 条评论
为什么被折叠?



