视频链接:HuggingFace简明教程,BERT中文模型实战示例.NLP预训练模型,Transformers类库,datasets类库快速入门._哔哩哔哩_bilibili
文本分类
import torch
from datasets import load_from_disk
from transformers import BertTokenizer, BertModel
from torch.utils.data import Dataset, DataLoader
from torch.optim import AdamW
import os
from transformers import logging
# 设置transformers模块的日志等级,减少不必要的警告,对训练过程无影响,请忽略
logging.set_verbosity_error()
# 从本地加载数据集
dataset = load_from_disk('../datasets/ChnSentiCorp/data')
#定义数据集
class Dataset(Dataset):
def __init__(self, dataset):
self.dataset = dataset
def __len__(self):
return len(self.dataset)
def __getitem__(self, i):
text = self.dataset[i]['text']
label = self.dataset[i]['label']
return text, label
train = Dataset(dataset['train'])
validation = Dataset(dataset['validation']) # 不能叫test,会与test()重名,报错
#加载字典和分词工具
token = BertTokenizer.from_pretrained('bert-base-chinese')
# 定义批处理函数
def collate_fn(data):
sents = [i[0] for i in data]
labels = [i[1] for i in data]
#编码
data = token.batch_encode_plus(batch_text_or_text_pairs=sents,
truncation=True,
padding='max_length',
max_length=500,
return_tensors='pt',
return_length=True)
#input_ids:编码之后的数字
#attention_mask:是补零的位置是0,其他位置是1
input_ids = data['input_ids']
attention_mask = data['attention_mask']
token_type_ids = data['token_type_ids']
labels = torch.LongTensor(labels)
#print(data['length'], data['length'].max())
return input_ids, attention_mask, token_type_ids, labels
#数据加载器
loader = DataLoader(dataset=train,
batch_size=16,
collate_fn=collate_fn,
shuffle=True,
drop_last=True)
for i, (input_ids, attention_mask, token_type_ids, labels) in enumerate(loader):
break
# print(len(loader)) # 600
# print(input_ids.shape, attention_mask.shape, token_type_ids.shape, labels) # torch.Size([16, 500]) torch.Size([16, 500]) torch.Size([16, 500]) tensor([0, 1, 0, 0, 1, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 1])
#加载预训练模型
pretrained = BertModel.from_pretrained('bert-base-chinese')
#不训练,不需要计算梯度
for param in pretrained.parameters():
param.requires_grad_(False)
#模型试算
# out = pretrained(input_ids=input_ids,attention_mask=attention_mask, token_type_ids=token_type_ids)
# print(out.last_hidden_state.shape) # torch.Size([16, 500, 768])
#定义下游任务模型
class Model(torch.nn.Module):
def __init__(self):
super().__init__()
self.fc = torch.nn.Linear(768, 2) # 预训练模型的隐层输出维度是768
def forward(self, input_ids, attention_mask, token_type_ids):
with torch.no_grad(): # 不改变预训练模型参数
out = pretrained(input_ids=input_ids,
attention_mask=attention_mask,
token_type_ids=token_type_ids)
out = self.fc(out.last_hidden_state[:, 0]) # 解决分类问题只需要使用到[CLS],即第一个字符
out = out.softmax(dim=

最低0.47元/天 解锁文章
1108

被折叠的 条评论
为什么被折叠?



