概率机器人——多元正态分布密度函数

首先,已知一维正态分布的概率密度函数为:

p(x)=(2\pi \sigma ^{2} )^{-\frac{1}{2} }exp ^{-\frac{1}{2} -\frac{(x-\mu )^{2}}{\sigma ^{2}}}

多元正态分布下:

其数据为:x=\left \{ x_{0}, x_{1} ,...,x_{n}\right \}

均值为:\mu =\left \{ \mu_{0}, \mu_{1} ,...,\mu_{n}\right \}

方差为:\sigma =\left \{ \sigma _{0}, \sigma _{1} ,...,\sigma _{n}\right \}

概率密度展开:

p(x)=p(x_{0})p(x_{1})p(x_{2})...p(x_{n})

=(2\pi \sigma_{0} ^{2})^{-\frac{1}{2} }exp^{-\frac{1}{2} \frac{(x_{0}-\mu_{0} )^{2}}{\sigma_{0} ^{2}}}* (2\pi \sigma_{1} ^{2})^{-\frac{1}{2} }exp^{-\frac{1}{2} \frac{(x_{1}-\mu_{1} )^{2}}{\sigma_{1} ^{2}}}*...* (2\pi \sigma_{n} ^{2})^{-\frac{1}{2} }exp^{-\frac{1}{2} \frac{(x_{n}-\mu_{n} )^{2}}{\sigma_{n} ^{2}}}

=(2\pi \sigma_{0} ^{2})^{-\frac{1}{2} }(2\pi \sigma_{1} ^{2})^{-\frac{1}{2} }...(2\pi \sigma_{n} ^{2})^{-\frac{1}{2} } *exp^{-\frac{1}{2} \frac{(x_{0}-\mu_{0} )^{2}}{\sigma_{0} ^{2}}} exp^{-\frac{1}{2} \frac{(x_{1}-\mu_{1} )^{2}}{\sigma_{1} ^{2}}}... exp^{-\frac{1}{2} \frac{(x_{n}-\mu_{n} )^{2}}{\sigma_{n} ^{2}}}

=(2\pi \sigma_{0} ^{2})^{-\frac{1}{2} }(2\pi \sigma_{1} ^{2})^{-\frac{1}{2} }...(2\pi \sigma_{n} ^{2})^{-\frac{1}{2} } *exp^{-\frac{1}{2} (\frac{(x_{0}-\mu_{0} )^{2}}{\sigma_{0} ^{2}} +\frac{(x_{1}-\mu_{1} )^{2}}{\sigma_{1} ^{2}} + ...+\frac{(x_{n}-\mu_{n} )^{2}}{\sigma_{n} ^{2}})}

令:

\Sigma =\begin{bmatrix} \sigma _{0}^{2} & & & & \\ & \sigma _{1}^{2} & & & \\ & & \sigma _{2}^{2} & & \\ & & & ... & \\ & & & & \sigma _{n}^{2} \end{bmatrix}\Sigma^{-1} =\begin{bmatrix} \frac{1}{\sigma _{0}^{2}} & & & & \\ & \frac{1}{\sigma _{1}^{2}} & & & \\ & & \frac{1}{\sigma _{2}^{2}} & & \\ & & & ... & \\ & & & & \frac{1}{\sigma _{n}^{2}} \end{bmatrix}

则有

(2\pi \sigma _{0}^{2})^{-\frac{1}{2} }(2\pi \sigma _{1}^{2})^{-\frac{1}{2} }... (2\pi \sigma _{n}^{2})^{-\frac{1}{2} }

=det(\begin{bmatrix} (2\pi \sigma _{0}^{2})^{-\frac{1}{2} } & & & \\ & (2\pi \sigma _{1}^{2})^{-\frac{1}{2} } & & \\ & & ... & \\ & & & (2\pi \sigma _{n}^{2})^{-\frac{1}{2} } \end{bmatrix})

=det(2\pi \Sigma )^{-\frac{1}{2} }

exp^{-\frac{1}{2} (\frac{(x_{0}-\mu _{0})^{2}}{\sigma _{0}^{2}}+\frac{(x_{1}-\mu _{1})^{2}}{\sigma _{1}^{2}}+...+ \frac{(x_{n}-\mu _{n})^{2}}{\sigma _{n}^{2}})}

=exp^{-\frac{1}{2} \begin{bmatrix} x_{0}-\mu_{0}\\ x_{1}-\mu_{1}\\ ...\\ x_{0}-\mu_{0} \end{bmatrix}\begin{bmatrix} \frac{1}{\sigma _{0}^{2}} & & & \\ & \frac{1}{\sigma _{1}^{2}} & & \\ & & ... & \\ & & &\frac{1}{\sigma _{n}^{2}} \end{bmatrix}\begin{bmatrix} x_{0}-\mu_{0}& x_{1}-\mu_{1}& ...&x_{0}-\mu_{0} \end{bmatrix}}

=exp^{-\frac{1}{2}(x-\mu )^{T}\Sigma ^{-1} (x-\mu )}

因此多元正态分布的概率密度函数为:

p(x)=det(2\pi \Sigma )^{-\frac{1}{2} }exp ^{-\frac{1}{2} (x-\mu )^{T}\Sigma ^{-1}(x-\mu )}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值