数字通信系统中的均衡技术

本文深入探讨了自适应均衡器,如LMS、RLS和ZF算法,重点讲解它们如何通过训练和跟踪模式消除码间串扰。性能关键因素包括收敛速度、失调和计算复杂度。同时,文章介绍了这些算法在最小均方误差和最陡下降上的应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

均衡技术是为了消除码间串扰的影响
自适应均衡器

可以自动调整抽头滤波系数的均衡器。包含两个工作模式,训练模式和跟踪模式;

  1. 训练模式:发射机发射一个已知的定长的序列,以便接收机处的均衡器可以做出正确的设置
  2. 跟踪模式:均衡器的自适应算法就可以跟踪不断变化的信道,自适应均衡器将不断改变其滤波特性。

决定算法性能的因素:

  1. 收敛速度,系统从初始状态到达迭代状态的结果逼近最优解时所需要的时间
  2. 失调,均衡器取总平均的均方差的终值与最有均方差之间的差距
  3. 计算复杂度,完成迭代所需要的计算次数
  4. 数值特性,当算法以数字逻辑电路实现时,有误差存在会影响最终的精确特性

LMS算法

判决依据是最小均方误差,即期望信号与均衡器输出 y ( n ) y(n) y(n)之差的平方值的期望值最小,并且根据这个来修改权系数
在这里插入图片描述

RLS算法

本质上是最陡下降算法,由梯度的向量值估计

迫零算法(ZF)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值