2022毕业流程

这篇博客记录了一位毕业生的论文写作与答辩过程,包括论文查重、盲审、修改直至通过,以及毕业行李打包、寄送和手续办理的详细步骤。期间涉及了论文查重软件如万方、知网、大雅,以及盲审结果和答辩准备。同时,博主还分享了处理闲置物品,如MATLAB软件和图书归还的情况。
摘要由CSDN通过智能技术生成

二二的节奏感毕业旅程

毕业设计相关

  1. 4.28-5.15 论文撰写
  2. 5.12 上传万方排队查重 5.13 出结果4.6%
  3. 5.15 endnote插入参考文献
  4. 5.15 提交学校知网查重
  5. 5.16 大雅查重 11.33%
  6. 5.16 提交学校盲审,知网查重结果10.6%
  7. 5.17 改变量和参考文献格式等,重新送审
  8. 5.25 盲审意见出一个A
  9. 5.26 盲审意见又出一个A
  10. 5.26 修改公式(改了一些前后不一致的错误),英文摘要、写致谢
  11. 5.30 开始做答辩PPT
  12. 6.2 领封面
  13. 预答辩
  14. 6.7正式答辩

毕业行李相关

  1. 打包袋购买
    5.31学校发了4个编织袋
    6.1 学校发了2个行李箱
    6.1 +一些
    准备寄京东
  2. 闲置出售
    5.31 matlab1、手机支架
    6.1 数学建模、matlab2
  3. 自行车寻找
  4. 6.1实验室物品打包
  5. 6.1图书馆书籍归还

毕业手续相关

  1. 三方
  2. 党关系
  3. 团关系
  4. 公寓退
AI实战-学生生活方式模式数据集分析预测实例(含24个源代码+69.54 KB完整的数据集) 代码手工整理,无语法错误,可运行。 包括:24个代码,共149.89 KB;数据大小:1个文件共69.54 KB。 使用到的模块: pandas os matplotlib.pyplot seaborn plotly.express warnings sklearn.model_selection.StratifiedShuffleSplit sklearn.pipeline.Pipeline sklearn.compose.ColumnTransformer sklearn.impute.SimpleImputer sklearn.preprocessing.OrdinalEncoder numpy sklearn.model_selection.cross_val_score sklearn.linear_model.LinearRegression sklearn.metrics.mean_squared_error sklearn.tree.DecisionTreeRegressor sklearn.ensemble.RandomForestRegressor sklearn.model_selection.train_test_split sklearn.preprocessing.PowerTransformer imblearn.pipeline.Pipeline imblearn.over_sampling.SMOTE sklearn.ensemble.AdaBoostClassifier sklearn.metrics.accuracy_score sklearn.metrics.precision_score sklearn.metrics.recall_score sklearn.metrics.f1_score optuna scipy.stats torch torch.nn torchvision.transforms torchvision.models torch.optim cv2 glob glob.glob torch.utils.data.DataLoader torch.utils.data.Dataset random.shuffle torch.utils.data.random_split torchsummary.summary matplotlib.ticker pyspark.sql.SparkSession pyspark.sql.functions.count pyspark.sql.functions.max pyspark.sql.functions.min pyspark.sql.functions.avg pyspark.sql.functions.stddev_samp pyspark.sql.functions.skewness pyspark.sql.functions.kurtosis pyspark.sql.functions pyspark.ml.feature.Tokenizer pyspark.ml.feature.VectorAssembler sklearn.preprocessing.LabelEncoder keras.models.Sequential keras.layers.Dense keras.utils.to_categorical ptitprince statsmodels.distributions.empirical_distribution.ECDF statsmodels.stats.outliers_influence.variance_inflation_factor ppscore sklearn.feature_selection.mutual_info_classif sklearn.decomposition.PCA sklearn.model_selection.StratifiedKFold sklearn.tree.DecisionTreeClassifier sklearn.metrics.balanced_accuracy_score sklearn.metrics.confusion_matrix mlxtend.plotting.plot_confusion_matrix scipy.stats.pearsonr scipy.stats.f_oneway sklearn.feature_selection.mutual_info_regression sklearn.feature_selecti
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值