DS线性结构—火车问题、1051 Pop Sequence (25分)

https://www.jianshu.com/p/c57eb5b7a8ff

在这里插入图片描述

题目描述
某火车站只有一条铁轨供火车停靠,所有的列车都从一侧进入,从另一侧出来。如果此时,列车A首先进入铁路,然后列车B在列车A离开之前进入铁路,则列车A不能离开,直到列车B离开(如下图所示)。车站最多有9列火车,所有火车都有一个ID(编号从1到n),列车按照Order1的顺序进入铁路,你需要确定列车可以以Order2的顺序从地铁站离开。

输入
测试数据有多组

每组包含一个整数N和两个字符串O1,O2,N代表列车数量(1 <= N <= 9),O1代表进站顺序,O2代表出站顺序

输出
对于每组数据

首先输出一行"Yes.“或"No.”,代表能否由当进站顺序为O1时,出站顺序O2能否实现

若能实现,给出你的实现方法,其中"in"为列车进站,"out"为列车出站。

最后输出一行FINISH。

具体输出见样例。

样例输入
3 123 321

3 123 312

样例输出
Yes.

in

in

in

out

out

out

FINISH

No.

FINISH

思路:
先将输出的字符存在队中,
新建一个栈用于存输入字符,
若栈非空且栈顶元素跟队头元素相同,即证明此时应该将栈顶元素弹出,
否则,将输入字符压入栈中。

该过程中由vector存操作字符串,
若(栈)压入,往vector里push_back “in”,
若弹出,往vector里push_back “out”。

作者:Allison_de77链接:https://www.jianshu.com/p/c57eb5b7a8ff来源:简书著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。

===================================================================

在这里插入图片描述

===================================================================
在这里插入图片描述
在这里插入图片描述

模拟入栈
1051 Pop Sequence (25分)
Given a stack which can keep M numbers at most. Push N numbers in the order of 1, 2, 3, …, N and pop randomly. You are supposed to tell if a given sequence of numbers is a possible pop sequence of the stack. For example, if M is 5 and N is 7, we can obtain 1, 2, 3, 4, 5, 6, 7 from the stack, but not 3, 2, 1, 7, 5, 6, 4.

Input Specification:
Each input file contains one test case. For each case, the first line contains 3 numbers (all no more than 1000): M (the maximum capacity of the stack), N (the length of push sequence), and K (the number of pop sequences to be checked). Then K lines follow, each contains a pop sequence of N numbers. All the numbers in a line are separated by a space.

Output Specification:
For each pop sequence, print in one line “YES” if it is indeed a possible pop sequence of the stack, or “NO” if not.

Sample Input:
5 7 5
1 2 3 4 5 6 7
3 2 1 7 5 6 4
7 6 5 4 3 2 1
5 6 4 3 7 2 1
1 7 6 5 4 3 2
Sample Output:
YES
NO
NO
YES
NO
在这里插入图片描述

#include <cstdio>
#include <stack>
using namespace std;

int main(){
	int a,b,c;
	scanf("%d%d%d",&a,&b,&c);

	stack<int> s;
	int arr[b];
	while(c--){
		while(!s.empty())s.pop();
		for(int i=1;i<=b;i++){
			scanf("%d",&arr[i]);
		}
		bool flag=true;
        int cur=1;
		for(int i=1;i<=b;i++){
            s.push(i);
			if(s.size()>a){
				flag=false;
				break;
			}	
			while(!s.empty()&&s.top()==arr[cur]){
				s.pop();
				cur++;
			}
        }
        if(flag==true&&s.empty()==true)printf("YES\n");
	    else printf("NO\n"); 
	}
	return 0;	
}

在当今计算机视觉领域,深度学习模型在图像割任务中发挥着关键作用,其中 UNet 是一种在医学影像析、遥感图像处理等领域广泛应用的经典架构。然而,面对复杂结构和多尺度特征的图像,UNet 的性能存在局限性。因此,Nested UNet(也称 UNet++)应运而生,它通过改进 UNet 的结构,增强了特征融合能力,提升了复杂图像的割效果。 UNet 是 Ronneberger 等人在 2015 年提出的一种卷积神经网络,主要用于生物医学图像割。它采用对称的编码器 - 解码器结构,编码器负责提取图像特征,解码器则将特征映射回原始空间,生成像素级预测结果。其跳跃连接设计能够有效传递低层次的细节信息,从而提高割精度。 尽管 UNet 在许多场景中表现出色,但在处理复杂结构和多尺度特征的图像时,性能会有所下降。Nested UNet 通过引入更深层次的特征融合来解决这一问题。它在不同尺度上建立了密集的连接路径,增强了特征的传递与融合。这种“嵌套”结构不仅保持了较高辨率,还增加了特征学习的深度,使模型能够更好地捕获不同层次的特征,从而显著提升了复杂结构的割效果。 模型结构:在 PyTorch 中,可以使用 nn.Module 构建 Nested UNet 的网络结构。编码器部包含多个卷积层和池化层,并通过跳跃连接传递信息;解码器部则包含上采样层和卷积层,并与编码器的跳跃连接融合。每个阶段的连接路径需要精心设计,以确保不同尺度信息的有效融合。 编码器 - 解码器连接:Nested UNet 的核心在于多层次的连接。通过在解码器中引入“skip connection blocks”,将编码器的输出与解码器的输入相结合,形成一个密集的连接网络,从而实现特征的深度融合。 训练与优化:训练 Nested UNet 时,需要选择合适的损失函数和优化器。对于图像割任务,常用的损失
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值