基于matlab的深度学习的视觉场景识别

42 篇文章 69 订阅 ¥49.90 ¥99.00
本文介绍了使用MATLAB进行深度学习的视觉场景识别,涵盖了深度学习的基础理论,重点讲解了如何利用matconvnet工具箱配置环境、制作数据集、训练网络以及测试。实验在Corel图像库上进行,最终正确率达到了90%,展示了深度学习在图像分类领域的应用潜力。
摘要由CSDN通过智能技术生成


前言

近年来,深度学习在多个领域都得以广泛应用并取得了显著的成绩。2012 年 10 月,Hinton教授及他的学生采用深度卷积神经网络模型在著名的 ImageNet 问题上取得了当时世界上最好的成就,引发了社会各界人士的广泛关注。Facebook 的人脸识别项目 DeepFace 基于深度学习进行搭建,可应用于分辨两幅现实场景的照片,识别出这两幅照片是否包含同一张人脸,据称该判断的准确度已接近人类的平均水平。虽然人类也可以完成这项任务,但是难以大量数据的并发处理,具有局限性。因此,基于深度学习的人脸识别可综合运用计算机的高性能并发计算能力,具备应用于互联网图像大数据处理的潜力


一、理论基础

传统的机器学习算法框架(例如 SVMs 及 Logistic Regression)等一般属于浅层学习范畴,对应较少的层数。深度学习则通过构建多级中间层的方式来增加算法结构的深度,达到多层次网络模型的架构。如图 30-1 所示,通过学习深层非线性的网络结构,深度学习可以实现对复杂函数的逼近,进而更好地对数据的本质特征进行描述,达到更高的准确度。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

挂科边缘

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值