前言
近年来,深度学习在多个领域都得以广泛应用并取得了显著的成绩。2012 年 10 月,Hinton教授及他的学生采用深度卷积神经网络模型在著名的 ImageNet 问题上取得了当时世界上最好的成就,引发了社会各界人士的广泛关注。Facebook 的人脸识别项目 DeepFace 基于深度学习进行搭建,可应用于分辨两幅现实场景的照片,识别出这两幅照片是否包含同一张人脸,据称该判断的准确度已接近人类的平均水平。虽然人类也可以完成这项任务,但是难以大量数据的并发处理,具有局限性。因此,基于深度学习的人脸识别可综合运用计算机的高性能并发计算能力,具备应用于互联网图像大数据处理的潜力
一、理论基础
传统的机器学习算法框架(例如 SVMs 及 Logistic Regression)等一般属于浅层学习范畴,对应较少的层数。深度学习则通过构建多级中间层的方式来增加算法结构的深度,达到多层次网络模型的架构。如图 30-1 所示,通过学习深层非线性的网络结构,深度学习可以实现对复杂函数的逼近,进而更好地对数据的本质特征进行描述,达到更高的准确度。
本文介绍了使用MATLAB进行深度学习的视觉场景识别,涵盖了深度学习的基础理论,重点讲解了如何利用matconvnet工具箱配置环境、制作数据集、训练网络以及测试。实验在Corel图像库上进行,最终正确率达到了90%,展示了深度学习在图像分类领域的应用潜力。
订阅专栏 解锁全文
1787

被折叠的 条评论
为什么被折叠?



