前言
数学形态学以图像的形态特征为研究对象,通过设计一套独特的数字图像处理方法和理论来描述图像的基本特征和结构,通过引入集合的概念来描述图像中元素与元素、部分与部分的关系运算。因此,数学形态学的运算由基础的集合运算(并、交、补等)来定义,并且所有的图像矩阵都能被方便地转换为集合。随着集合理论研究的不断深入和实际应用的拓展,图像形态学处理也在图像分析、模式识别等领域起着重要的应用。
一、理论基础
1.图像去噪方法
数字图像在被获取、传输的过程中都可能受到噪声的污染,常见的噪声主要有高斯噪声和椒盐噪声。其中,高斯噪声主要是由摄像机传感器元器件内部产生的;椒盐噪声主要是由图像切割所产生的黑白相间的亮暗点噪声,“椒”表示黑色噪声,“盐”表示白色噪声。
数字图像去噪也可以分为空域图像去噪和频域图像去噪。空域图像去噪常用的有均值滤波算法和中值滤波算法,主要是对图像像素做邻域的运算来达到去噪效果。频域图像去噪首先是对数字图像进行某种变换,将其从空域转换到频域,然后对频域中的变换系数进行处理,最后对图像进行反变换,将其从频域转换到空域来达到去噪效果。其中,对图像进行空域和频域相互转换的方法有很多,常用的有傅里叶变换、小波变换等。
数学形态学图像处理通过采用具有
本文介绍了基于数学形态学的权重自适应图像去噪方法,包括图像去噪的基础理论、数学形态学原理,以及权重自适应的多结构形态学去噪。通过构造串联和并联滤波器,结合自适应权值算法,实验结果显示并联滤波器在去噪效果上优于串联滤波器,提高了图像的PSNR值。
订阅专栏 解锁全文
422

被折叠的 条评论
为什么被折叠?



