手把手教你完成基于cnn的手写数字识别系统MATLAB语言

42 篇文章 69 订阅 ¥49.90 ¥99.00
本文详细介绍了使用MATLAB进行手写数字识别的步骤,包括CNN搭建、AlexNet网络编辑与导出、GUI界面设计、模型训练以及基于TensorFlow的Python版本实验。通过MATLAB和TensorFlow的对比,展示了CNN在分类识别任务中的应用。
摘要由CSDN通过智能技术生成


前言

手写数字识别是经典的 CNN 分类应用之一,常用的数据集就是 MNIST 手写数字数据集,包含 0~9 这 10 个数字的手写图片,每个数字都由 6 万幅训练图像和 1 万幅测试图像构成。为了便于直观分析,这里选择 MATLAB 工具箱提供的 DigitDataset 进行训练识别,读者也可以直接利用 MNIST 数据集或者自己设计的数据集进行实验。其中,数据集文件夹 db 如图 所示。
在这里插入图片描述
在数据集文件夹 db 里面对每个数字都建立了子文件夹,各自包含 1000 幅 28×28 大小的二维灰度图像。以数字 0 为例,其文件列表如图所示。
在这里插入图片描述
本次实验采用CNN进行分类识别,为了便于对不同的网络进行实验分析,选择自定义CNN、修改 AlexNet 两种网络设计方式进行网络搭建。


一、cnn搭建

MATLAB 提供了丰富的卷积网络设计函数,并支持通过

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

挂科边缘

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值