目录
前言
手写数字识别是经典的 CNN 分类应用之一,常用的数据集就是 MNIST 手写数字数据集,包含 0~9 这 10 个数字的手写图片,每个数字都由 6 万幅训练图像和 1 万幅测试图像构成。为了便于直观分析,这里选择 MATLAB 工具箱提供的 DigitDataset 进行训练识别,读者也可以直接利用 MNIST 数据集或者自己设计的数据集进行实验。其中,数据集文件夹 db 如图 所示。

在数据集文件夹 db 里面对每个数字都建立了子文件夹,各自包含 1000 幅 28×28 大小的二维灰度图像。以数字 0 为例,其文件列表如图所示。

本次实验采用CNN进行分类识别,为了便于对不同的网络进行实验分析,选择自定义CNN、修改 AlexNet 两种网络设计方式进行网络搭建。
一、cnn搭建
MATLAB 提供了丰富的卷积网络设计函数,并支持通过
本文详细介绍了使用MATLAB进行手写数字识别的步骤,包括CNN搭建、AlexNet网络编辑与导出、GUI界面设计、模型训练以及基于TensorFlow的Python版本实验。通过MATLAB和TensorFlow的对比,展示了CNN在分类识别任务中的应用。
订阅专栏 解锁全文
127

被折叠的 条评论
为什么被折叠?



