基于matlab的深度学习汽车目标检测

42 篇文章 69 订阅 ¥49.90 ¥99.00
本文介绍了一个基于MATLAB的深度学习汽车目标检测案例。通过利用卷积神经网络(CNN)进行特征抽取和分类,实现了汽车的检测。理论部分详细讲解了卷积层的局部感知、参数共享和多核卷积,以及池化层的作用。在程序实现部分,涵盖了数据加载、CNN模型搭建、训练及效果评估。实验结果显示,CNN模型能有效检测小汽车,但精度仍有提升空间。
摘要由CSDN通过智能技术生成


前言

随着深度学习的迅猛发展,其应用也越来越广泛,特别是在视觉识别、语音识别和自然语言处理等很多领域都表现出色。卷积神经网络(Convolutional Neural Network,CNN)作为深度学习中应用最广泛的网络模型之一,也得到人们了越来越多的关注和研究。事实上,CNN 作为
一项经典的机器学习算法,早在 20 世纪 80 年代就已被人们提出并展开一定的研究。但是,在当时硬件运算能力有限、缺乏有效训练数据等因素的影响下,人们难以训练不产生过拟合情形下的高性能深度卷积神经网络模型。所以,当时 CNN 的一个经典应用场景就是识别银行支票上的手写数字,并且已得到实际应用。伴随着计算机硬件和大数据技术的不断进步,人们也尝试开发不同的方法来解决在深度 CNN 训练中所遇到的困难,特别是 Krizhevsky 等专家提出了一种经典的 CNN 架构,论证了深度结构在特征提取问题上的潜力,并在图像识别任务上取得了重大突破,掀起了深度结构研究的浪潮。而 CNN 作为一种已经存在的、有一定应用案例的
深度结构,也重新回到人们的视野,得以进一步研究和应用。
随着标记数据的积累和 GPU 高性能计算技术的发展,卷积神经网络的研究和应用也不断涌现出新的成果。本案例使用已标记的小汽车样本数据训练 RCNN(Regions with Convo

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

挂科边缘

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值