前言
随着深度学习的迅猛发展,其应用也越来越广泛,特别是在视觉识别、语音识别和自然语言处理等很多领域都表现出色。卷积神经网络(Convolutional Neural Network,CNN)作为深度学习中应用最广泛的网络模型之一,也得到人们了越来越多的关注和研究。事实上,CNN 作为
一项经典的机器学习算法,早在 20 世纪 80 年代就已被人们提出并展开一定的研究。但是,在当时硬件运算能力有限、缺乏有效训练数据等因素的影响下,人们难以训练不产生过拟合情形下的高性能深度卷积神经网络模型。所以,当时 CNN 的一个经典应用场景就是识别银行支票上的手写数字,并且已得到实际应用。伴随着计算机硬件和大数据技术的不断进步,人们也尝试开发不同的方法来解决在深度 CNN 训练中所遇到的困难,特别是 Krizhevsky 等专家提出了一种经典的 CNN 架构,论证了深度结构在特征提取问题上的潜力,并在图像识别任务上取得了重大突破,掀起了深度结构研究的浪潮。而 CNN 作为一种已经存在的、有一定应用案例的
深度结构,也重新回到人们的视野,得以进一步研究和应用。
随着标记数据的积累和 GPU 高性能计算技术的发展,卷积神经网络的研究和应用也不断涌现出新的成果。本案例使用已标记的小汽车样本数据训练 RCNN(Regions with Convo
本文介绍了一个基于MATLAB的深度学习汽车目标检测案例。通过利用卷积神经网络(CNN)进行特征抽取和分类,实现了汽车的检测。理论部分详细讲解了卷积层的局部感知、参数共享和多核卷积,以及池化层的作用。在程序实现部分,涵盖了数据加载、CNN模型搭建、训练及效果评估。实验结果显示,CNN模型能有效检测小汽车,但精度仍有提升空间。
订阅专栏 解锁全文
563

被折叠的 条评论
为什么被折叠?



