目录
前言
车牌自动识别模块是现代社会智能交通系统(ITS)的重要组成部分,是图像处理和模式识别技术研究的热点,具有非常广泛的应用。车牌识别主要包括以下三个主要步骤:车牌区域定位、车牌字符分割、车牌字符识别。
本案例通过对采集的车牌图像进行灰度变换、边缘检测、腐蚀及平滑等过程进行车牌图像预处理,并由此得到一种基于车牌颜色纹理特征的车牌定位方法,最终实现了车牌区域定位。车牌字符分割是为了方便后续对车牌字符进行匹配,从而对车牌进行识别。本案例采用了模板匹配的方法,对输出的字符图像和模板库里的模板进行匹配以得到对应车牌字符的具体信息。本案例基于 MATLAB 的 GUI 工具进行设计仿真实验,实验表明,整体方案有效可行。基于模板匹配的车牌识别技术在识别正确率、速度方面具有独特的优势及广阔的应用前景。
一、理论基础
车牌定位与字符识别技术以计算机图像处理、模式识别等技术为基础,通过对原图像进行预处理及边缘检测等过程来实现对车牌区域的定位,然后对车牌区域进行图像裁剪、归一化、字符分割及保存,最后将分割得到的字符图像与模板库的模板进行匹配识别,输出匹配结果。该流程如图 5-1 所示。
本文介绍了使用MATLAB进行车牌识别的案例,包括图像灰度化、二值化、边缘检测、形态学运算、滤波处理、车牌定位、字符处理和字符识别等步骤。通过模板匹配方法进行字符识别,实现车牌信息的有效提取。
订阅专栏 解锁全文
1629

被折叠的 条评论
为什么被折叠?



