前言
CNN 是一款强大的图像特征抽象和提取工具,常用于图像分类识别,并取得了较为理想的效果。我们通过 MATLAB 可以方便地设计不同结构、不同深度的 CNN 进行图像分类,最后一层一般设置为分类层(ClassificationLayer)进行类别标签的输出。如果我们将最后一层设计为
回归层(RegressionLayer),则可以将其应用于对连续数据的预测,这对于曲线拟合、预测分析都有重要的意义。
一、倾斜数据集
本次实验选择 DigitDataset 的图像及倾斜角度作为分析对象,通过对不同的 CNN 增加回归层来计算倾斜角度,进而进行数字图像的矫正。在数据倾斜角度采用索引文件的方式进行配置,如图 31-48 所示。

其中,第 1 列为文件名、第 2 列为对应的数字文件夹、第 3 列为倾斜角度。为了便于直观分析,我们设计数据加载函数生成训练集、验证集并进行随机呈现。核心代码如下:
本文介绍了一个基于MATLAB的CNN手写数字图像矫正系统,利用CNN进行图像倾斜角度的回归预测,实现了GUI界面,支持自定义CNN和AlexNet网络,通过训练和测试展示了模型的有效性。
订阅专栏 解锁全文
9136

被折叠的 条评论
为什么被折叠?



