基于matlab的CNN手写数字图像矫正系统

42 篇文章 69 订阅 ¥49.90 ¥99.00
本文介绍了一个基于MATLAB的CNN手写数字图像矫正系统,利用CNN进行图像倾斜角度的回归预测,实现了GUI界面,支持自定义CNN和AlexNet网络,通过训练和测试展示了模型的有效性。
摘要由CSDN通过智能技术生成


前言

CNN 是一款强大的图像特征抽象和提取工具,常用于图像分类识别,并取得了较为理想的效果。我们通过 MATLAB 可以方便地设计不同结构、不同深度的 CNN 进行图像分类,最后一层一般设置为分类层(ClassificationLayer)进行类别标签的输出。如果我们将最后一层设计为
回归层(RegressionLayer),则可以将其应用于对连续数据的预测,这对于曲线拟合、预测分析都有重要的意义。


一、倾斜数据集

本次实验选择 DigitDataset 的图像及倾斜角度作为分析对象,通过对不同的 CNN 增加回归层来计算倾斜角度,进而进行数字图像的矫正。在数据倾斜角度采用索引文件的方式进行配置,如图 31-48 所示。
在这里插入图片描述
其中,第 1 列为文件名、第 2 列为对应的数字文件夹、第 3 列为倾斜角度。为了便于直观分析,我们设计数据加载函数生成训练集、验证集并进行随机呈现。核心代码如下:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

挂科边缘

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值