手把手教你运行yolov8区域计数检测

视频演示

视频教学链接: link
请添加图片描述


一、源码下载

官网源码地址是:链接: link
我整理好的源码下载地址 :链接: : link
提取码: rpe7
其实我在官网源码上多了一个模型+一个视频

二、环境配置视频教学

yolov8环境安装视频教学链接: link

安装完环境就可以运行yolov8源码了,运行教学视频连接:链接: link

总结

创作不易,帮忙点个赞赞,谢谢啦

当然可以!下面是手把手你配置Yolov5的步骤: 1. 安装Python环境:首先确保你的电脑上已经安装了Python环境。你可以从Python官方网站下载并安装最新版本的Python。 2. 克隆Yolov5仓库:打开终端或命令提示符,使用以下命令克隆Yolov5的GitHub仓库: ``` git clone https://github.com/ultralytics/yolov5.git ``` 3. 安装依赖库:进入克隆下来的yolov5目录,执行以下命令安装所需的依赖库: ``` cd yolov5 pip install -r requirements.txt ``` 4. 准备数据集:将你的训练数据集准备好,并按照Yolov5的要求进行标注。确保你的数据集包含图像和相应的标签文件。 5. 配置模型:在yolov5目录下,打开`yolov5/models`文件夹,选择一个适合你的任务的模型配置文件,比如`yolov5s.yaml`。你可以根据需要修改配置文件中的参数,如网络结构、输入图像大小、类别数等。 6. 训练模型:使用以下命令开始训练模型: ``` python train.py --img 640 --batch 16 --epochs 100 --data your_data.yaml --cfg models/yolov5s.yaml --weights '' --name your_model_name ``` 其中,`--img`指定输入图像的大小,`--batch`指定批量大小,`--epochs`指定训练轮数,`--data`指定数据集的配置文件,`--cfg`指定模型的配置文件,`--weights`指定预训练权重文件(可选),`--name`指定训练过程中保存模型的名称。 7. 测试模型:训练完成后,你可以使用以下命令对模型进行测试: ``` python detect.py --source your_test_images --weights runs/train/your_model_name/weights/best.pt --conf 0.4 ``` 其中,`--source`指定测试图像的路径,`--weights`指定训练得到的模型权重文件,`--conf`指定置信度阈值。 以上就是手把手你配置Yolov5的步骤。祝你成功!如果还有其他问题,请随时提问。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

挂科边缘

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值