文章目录
前言
运动视觉研究的内容是如何从变化场景中的一系列不同时刻的图像中提取有关场景中物体的形状、位置和运动的信息,其研究方法可以分为两类:基于特征的方法和基于光流场的方法。
基于特征的方法抽取特征点,是离散的;光流场属于运动数据研究范畴,是基于连续的图像序列,并直接对其进行运动估计,可以求得图像中每个像素所对应物体的运动信息。当物体运动时,在图像上对应物体的亮度模式也在运动。光流(Optical Flow)是指图像中亮度模式运动的速度,光流场是一种二维瞬时速度场,是景物中可见点的三维速度矢量在成像
表面的投影。光流不仅包含了被观察物体的运动信息,还携带着有关场景的三维结构信息。
本案例基于 Computer Vision System Toolbox,使用光流场算法对交通视频中汽车的运动状态进行检测和估计。
一、理论基础
1.基于光流法检测运动的原理
光流场是指图像灰度模式的表观运动,是一种像素级的运动。以光流法检测运动物体的基本原理是:根据各个像素点的速度矢量特征,可以对图像进行动态分析。如果在图像中没有运动的物体,则光流矢量在整个图像区域是连续变化的;当图像中有运动物体时,则由于目标和图像背景存在相对运
本文介绍了基于MATLAB的光流场理论及其在车流量计数中的应用。通过计算视觉系统工具箱,使用Horn-Schunck光流算法检测交通视频中的汽车运动。通过光流场分析,可以有效地识别和计数汽车,但面临相邻车辆接近时的误分割问题,可结合其他技术提高分割效果。
订阅专栏 解锁全文
3160

被折叠的 条评论
为什么被折叠?



