基于K-means聚类算法的图像分割

42 篇文章 69 订阅 ¥49.90 ¥99.00
本文介绍了基于K-means聚类算法的图像分割技术,详细阐述了K-means算法的原理、要点和缺点,并探讨了如何利用K-means进行图像分割,通过实例展示了在不同聚类数量下对图像的分割效果。此外,还提到了K-means算法的局限性,如对初始聚类中心和聚类数量的依赖,以及对噪声和孤立点的敏感性。
摘要由CSDN通过智能技术生成


前言

图像分割就是把图像分成各具特性的区域并提取人们感兴趣的目标的技术和过程,是目标检测和模式识别的基础。现有的图像分割方法主要有基于阈值的分割方法、基于区域的分割方法、基于边缘的分割方法、基于特定理论的分割方法等。
聚类分析是一种无监督的学习方法,能够从研究对象的特征数据中发现关联规则,因而是一种强大有力的信息处理方法。以聚类法进行图像分割就是将图像空间中的像素点用对应的特征向量表示,根据它们在特征空间的特征相似性对特征空间进行分割,然后将其映射回原图像空间,得到分割结果。其中,K-means 均值和模糊 C 均值聚类(FCM)算法是最常用的聚类算法。


一、理论基础

1.K-means 聚类算法的原理

K-means 算法首先从数据样本中选取 K 个点作为初始聚类中心;其次计算各个样本到聚类的距离,把样本归到离它最近的那个聚类中心所在的类;然后计算新形成的每个聚类的数据对象的平均值来得到新的聚类中心;最后重复以上步骤,直到相邻两次的聚类中心没有任何变化,
说明样本调整结束,聚类准则函数达到最优。如图 22-1 所示为 K-means 聚类算法的流程图。

运用K-means算法进行图像分割, K-means算法是很典型的基于距离的聚类算法,采用距离作为相似性的评价指标,即认为两个对象的距离越近,其相似度就越大。该算法认为簇是由距离靠近的对象组成的,因此把得到紧凑且独立的簇作为最终目标。 k个初始类聚类中心点的选取对聚类结果具有较大的 公式 公式 影响,因为在该算法第一步中是随机的选取任意k个对象作为初始聚类的中心,初始地代表一个簇。该算法在每次迭代中对数据集中剩余的每个对象,根据其与各个簇中心的距离将每个对象重新赋给最近的簇。当考察完所有数据对象后,一次迭代运算完成,新的聚类中心被计算出来。如果在一次迭代前后,J的值没有发生变化,说明算法已经收敛。 算法过程如下: 1)从N个文档随机选取K个文档作为质心 2)对剩余的每个文档测量其到每个质心的距离,并把它归到最近的质心的类 3)重新计算已经得到的各个类的质心 4)迭代2~3步直至新的质心与原质心相等或小于指定阈值,算法结束 具体如下: 输入:k, data[n]; (1) 选择k个初始中心点,例如c[0]=data[0],…c[k-1]=data[k-1]; (2) 对于data[0]….data[n],分别与c[0]…c[k-1]比较,假定与c[i]差值最少,就标记为i; (3) 对于所有标记为i点,重新计算c[i]={ 所有标记为i的data[j]之和}/标记为i的个数; (4) 重复(2)(3),直到所有c[i]值的变化小于给定阈值。 折叠工作原理 K-MEANS算法的工作原理及流程 K-MEANS算法 输入:聚类个数k,以及包含 n个数据对象的数据库。 输出:满足方差最小标准的k个聚类
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

挂科边缘

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值