前言
语音识别是一门覆盖面很广泛的交叉学科,与声学、语音学、语言学、信息理论、模式识别理论及神经生物学等学科都有非常密切的关系。语音识别通过语音信号处理和模式识别理论使得计算机自动识别和理解人类口述的语言,有两种意义:一是将人类口述的语句逐句地进行识别并转换为文字;二是对口述语言所包括的需求和询问做出合理的分析,执行相关的命令,而不是仅仅转换为书面文字。
本案例以语音识别为理论基础,通过与模式识别相结合的方式将其应用到信号灯图像的模拟控制领域,实现对指定语音信号进行自动识别并自动关联信号灯图像的效果,具有一定的使用价值。
提示:以下是本篇文章正文内容,下面案例可供参考
一、理论基础
语音信号的端点检测是进行语音识别的一个基本步骤,它是特征训练和识别的基础。端点检测是指在语音信号中查找各种段落(如音素、音节、词素)的始点和终点,并从语音信号中消除无声段,进而实现对语音有效信号段的截取。早期进行端点检测的主要依据是信号能量、振幅和过零率,但经常会出现误检测,效果并不明显。20 世纪 60 年代,日本学者 Itakura 提出了动态时间规整算法(Dynamic Time Warping,DTW),该算法
本文介绍了一种基于MATLAB的语音识别系统,该系统将语音识别技术应用于信号灯图像模拟控制,通过识别语音信号自动关联信号灯状态。理论基础涉及语音信号的端点检测、特征提取和模型匹配。程序实现部分详细阐述了如何通过提取特征参数、模板匹配算法以及关联语音信号类别来控制信号灯状态。该系统展示了语音识别在模式识别匹配中的应用,并提供了源码下载。
订阅专栏 解锁全文
1173

被折叠的 条评论
为什么被折叠?



