文章目录
前言
角点是图像中的一个重要的局部特征,决定了图像中关键区域的形状,体现了图像中重要的特征信号,所以在目标识别、图像匹配、图像重构等方面都具有十分重要的意义。对角点的定义一般可以分为以下三种:图像边界曲线具有极大曲率值的点、图像中梯度值和梯度变化率很高的点、图像在边界方向变化不连续的点。定义不同,角点的提取方法也不尽相同,如下所述。
1.基于图像边缘的检测方法
该类方法需要对图像的边缘进行编码,这在很大程度上依赖于图像的分割和边缘提取,具有较大的计算量,一旦待检测目标在局部发生变化,则很可能导致操作失败。早期主要有Rosenfeld 和 Freeman 等人所提出的方法,后期有曲率尺度空间等方法。
2.基于图像灰度的检测方法
该类方法通过计算点的曲率及梯度来检测角点,可避免基于图像边缘的检测方法存在的缺陷,是目前研究的重点。该类方法主要有 Moravec、Forstner、Harris 和 SUSAN 算子等。
一、理论基础
1.Harris 的基本原理
假设对图像进行不同方向上的窗口滑动扫描,通过分析窗口内的像素变化趋势来判断是否存在角点:如果窗口区域内的像素在各个方向上都没有显著变化,如图 17-1&
本文介绍了Harris角点检测的基本原理,包括其在图像分析中的重要性、算法流程和角点特性。Harris算法通过计算像素变化趋势判断角点,适用于目标识别和图像匹配。文中还探讨了算法的局限性,如尺度影响、阈值设置和窗口选择问题,并提到了改进方法。
订阅专栏 解锁全文
1224

被折叠的 条评论
为什么被折叠?



