基于Harris的角点特征检测

42 篇文章 69 订阅 ¥49.90 ¥99.00
本文介绍了Harris角点检测的基本原理,包括其在图像分析中的重要性、算法流程和角点特性。Harris算法通过计算像素变化趋势判断角点,适用于目标识别和图像匹配。文中还探讨了算法的局限性,如尺度影响、阈值设置和窗口选择问题,并提到了改进方法。
摘要由CSDN通过智能技术生成


前言

角点是图像中的一个重要的局部特征,决定了图像中关键区域的形状,体现了图像中重要的特征信号,所以在目标识别、图像匹配、图像重构等方面都具有十分重要的意义。对角点的定义一般可以分为以下三种:图像边界曲线具有极大曲率值的点、图像中梯度值和梯度变化率很高的点、图像在边界方向变化不连续的点。定义不同,角点的提取方法也不尽相同,如下所述。
1.基于图像边缘的检测方法
该类方法需要对图像的边缘进行编码,这在很大程度上依赖于图像的分割和边缘提取,具有较大的计算量,一旦待检测目标在局部发生变化,则很可能导致操作失败。早期主要有Rosenfeld 和 Freeman 等人所提出的方法,后期有曲率尺度空间等方法。
2.基于图像灰度的检测方法
该类方法通过计算点的曲率及梯度来检测角点,可避免基于图像边缘的检测方法存在的缺陷,是目前研究的重点。该类方法主要有 Moravec、Forstner、Harris 和 SUSAN 算子等。


一、理论基础

1.Harris 的基本原理

假设对图像进行不同方向上的窗口滑动扫描,通过分析窗口内的像素变化趋势来判断是否存在角点:如果窗口区域内的像素在各个方向上都没有显著变化,如图 17-1&

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

挂科边缘

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值