基于小波的图像压缩技术

42 篇文章 69 订阅 ¥49.90 ¥99.00
本文介绍了基于小波变换的图像压缩技术,详细阐述了小波分析的理论基础和图像压缩的处理流程,包括多分辨率分解、量化和编码。通过MATLAB实现2级Haar小波分解和重建,实验表明压缩后的图像在存储空间上显著减少,同时保持了较好的图像质量。
摘要由CSDN通过智能技术生成


前言

随着计算机网络技术的迅猛发展,数字多媒体和信息通信技术也在不断进步,人们之间的信息交流呈现不断增长的趋势。数字图像具有可视化、形象化的特点,能承载文字所不能表述的语义,其在信息交流中的应用也越来越广泛。随着图像拍摄技术的发展及移动智能设备的普及,人们可以方便地获取具有较高分辨率的实时图像,并可以通过移动网络等介质实现图像的即时传输。但是,原始数字图像往往具有一定的信息冗余,如像素编码冗余、像素相关冗余等。因此,图像质量的提高也引起了传输数据规模的急剧扩大,给数字图像的存储和传输带来了很大的压力。图像压缩技术的研究目标就是能最大程度地分析原始图像的冗余信息,滤除不必要
的数据量。因此,通过图像压缩技术来减小传输数据的规模,可以节省网络流量的损耗及存储空间,提高传输的速度和稳定性,实现信息的高效传输。图像压缩技术对于图像存储和传输的重要性也使得对图像压缩算法的研究成为一个非常活跃的领域。
20 世纪 80 年代,在应用数学研究的基础上发展起来一门新兴的学科——小波分析,它是众多高新技术发展的理论基础,被认为是现代傅里叶分析发展的一个里程碑,被誉为“数学显微镜”,在图像处理、语音处理、模式识别、人工智能、地理勘探、航天动力学、金融学等领域均有重要的应用。小波分析从数学的角度来看属于调和分析范畴,可以通过将某函数在指定小波基空间进行分解或

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

挂科边缘

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值